Bajnok Zoltan, Boldis Bercel, Korchemsky Gregory P
<a href="https://ror.org/03zwxja46">HUN-REN Wigner RCP</a>, Konkoly-Thege Miklos ut 29-33, 1121 Budapest, Hungary.
Department of Theoretical Physics, <a href="https://ror.org/02w42ss30">Budapest University of Technology and Economics</a>, Műegyetem rkp. 3., 1111 Budapest, Hungary.
Phys Rev Lett. 2024 Jul 19;133(3):031601. doi: 10.1103/PhysRevLett.133.031601.
Various observables in different four-dimensional superconformal Yang-Mills theories can be computed exactly as Fredholm determinants of truncated Bessel operators. We exploit this relation to determine their dependence on the 't Hooft coupling constant. Unlike the weak coupling expansion, which has a finite radius of convergence, the strong coupling expansion is factorially divergent, necessitating the inclusion of nonperturbative, exponentially small corrections. We develop a method to systematically compute these corrections and discuss the resurgent properties of the resulting transseries.
在不同的四维超共形杨-米尔斯理论中,各种可观测量可以精确地计算为截断贝塞尔算子的弗雷德霍姆行列式。我们利用这种关系来确定它们对‘t 胡夫特耦合常数的依赖性。与具有有限收敛半径的弱耦合展开不同,强耦合展开是阶乘发散的,这就需要包含非微扰的、指数级小的修正。我们开发了一种系统计算这些修正的方法,并讨论所得超级数的复苏性质。