Du F, Balakirev F F, Minkov V S, Smith G A, Maiorov B, Kong P P, Drozdov A P, Eremets M I
<a href="https://ror.org/02f5b7n18">Max Planck Institute for Chemistry</a>, Hahn Meitner Weg 1, Mainz 55128, Germany.
National High Magnetic Field Laboratory, <a href="https://ror.org/01e41cf67">Los Alamos National Laboratory</a>, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2024 Jul 19;133(3):036002. doi: 10.1103/PhysRevLett.133.036002.
The recent discovery of high-temperature, high-pressure superconductors, such as hydrides and nickelates, has opened exciting avenues in studying high-temperature superconductivity. The primary superconducting properties of these materials are well characterized by measuring various electrical and magnetic properties, despite the challenges posed by the high-pressure environment. Experimental microscopic insight into the pairing mechanism of these superconductors is even more challenging, due to the lack of direct probes of the superconducting gap structures at high pressure conditions. Here, we have developed a planar tunnel junction technique for diamond anvil cells and present ground-breaking tunneling spectroscopy measurements at megabar pressures. We determined the superconducting gap of elemental sulfur at 160 GPa, a key constituent of the high-temperature superconductor H_{3}S. High quality tunneling spectra indicate that β-Po phase sulfur is a type II superconductor with a single s-wave gap with a gap value 2Δ(0)=5.6 meV. This technique is compatible with superconducting compounds synthesized in diamond anvil cells and provides insight into the pairing mechanism in novel superconductors under high-pressure conditions.
近期对氢化物和镍酸盐等高温度、高压超导体的发现,为高温超导性的研究开辟了令人兴奋的途径。尽管高压环境带来了挑战,但通过测量各种电学和磁学性质,这些材料的主要超导特性已得到很好的表征。由于在高压条件下缺乏对超导能隙结构的直接探测手段,对这些超导体配对机制的实验微观洞察更具挑战性。在此,我们为金刚石对顶砧开发了一种平面隧道结技术,并展示了在兆巴压力下具有开创性的隧道光谱测量。我们确定了160吉帕下元素硫的超导能隙,它是高温超导体H₃S的关键成分。高质量的隧道光谱表明,β-Po相硫是一种II型超导体,具有单一的s波能隙,能隙值2Δ(0)=5.6毫电子伏特。该技术与在金刚石对顶砧中合成的超导化合物兼容,并为高压条件下新型超导体的配对机制提供了见解。