Suppr超能文献

基于纳米酶的比色传感器阵列与智能手机耦合,用于黄酮类化合物的区分和“分割-提取-回归”深度学习辅助定量分析。

Nanozyme-based colorimetric sensor arrays coupling with smartphone for discrimination and "segmentation-extraction-regression" deep learning assisted quantification of flavonoids.

机构信息

Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.

School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.

出版信息

Biosens Bioelectron. 2024 Nov 1;263:116604. doi: 10.1016/j.bios.2024.116604. Epub 2024 Jul 26.

Abstract

Achieving rapid, cost effective, and intelligent identification and quantification of flavonoids is challenging. For fast and uncomplicated flavonoid determination, a sensing platform of smartphone-coupled colorimetric sensor arrays (electronic noses) was developed, relying on the differential competitive inhibition of hesperidin, nobiletin, and tangeretin on the oxidation reactions of nanozymes with a 3,3',5,5'-tetramethylbenzidine substrate. First, density functional theory calculations predicted the enhanced peroxidase-like activities of CeO nanozymes after doping with Mn, Co, and Fe, which was then confirmed by experiments. The self-designed mobile application, Quick Viewer, enabled a rapid evaluation of the red, green, and blue values of colorimetric images using a multi-hole parallel acquisition strategy. The sensor array based on three channels of CeMn, CeFe, and CeCo was able to discriminate between different flavonoids from various categories, concentrations, mixtures, and the various storage durations of flavonoid-rich Citri Reticulatae Pericarpium through a linear discriminant analysis. Furthermore, the integration of a "segmentation-extraction-regression" deep learning algorithm enabled single-hole images to be obtained by segmenting from a 3 × 4 sensing array to augment the featured information of array images. The MobileNetV3-small neural network was trained on 37,488 single-well images and achieved an excellent predictive capability for flavonoid concentrations (R = 0.97). Finally, MobileNetV3-small was integrated into a smartphone as an application (Intelligent Analysis Master), to achieve the one-click output of three concentrations. This study developed an innovative approach for the qualitative and simultaneous multi-ingredient quantitative analysis of flavonoids.

摘要

实现快速、经济且智能化的黄酮类化合物的识别和定量是一项具有挑战性的任务。为了快速、简便地测定黄酮类化合物,本研究开发了一种基于智能手机的比色传感器阵列(电子鼻)传感平台,该平台依赖于橙皮苷、川陈皮素和桔皮素对纳米酶氧化反应的竞争抑制作用,纳米酶的氧化反应以 3,3',5,5'-四甲基联苯胺为底物。首先,密度泛函理论计算预测了 CeO 纳米酶掺杂 Mn、Co 和 Fe 后过氧化物酶样活性增强,实验结果证实了这一点。本研究设计的移动应用程序“Quick Viewer”采用多孔并行采集策略,能够快速评估比色图像的红、绿、蓝值。基于 CeMn、CeFe 和 CeCo 三个通道的传感器阵列能够通过线性判别分析区分来自不同类别、浓度、混合物以及黄酮类化合物富含的陈皮在不同储存时间的黄酮类化合物。此外,通过整合“分割-提取-回归”深度学习算法,能够通过从 3×4 传感器阵列中分割出单个孔图像来获取单个孔图像,从而增强阵列图像的特征信息。MobileNetV3-small 神经网络在 37,488 个单孔图像上进行训练,实现了对黄酮类化合物浓度的优异预测能力(R=0.97)。最后,将 MobileNetV3-small 集成到智能手机中作为应用程序(智能分析大师),实现了三种浓度的一键输出。本研究开发了一种创新的方法,用于黄酮类化合物的定性和同时多成分定量分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验