Suppr超能文献

用于基于DOTA的前体直接放射性标记的[锆]氯化锆

[Zr]ZrCl for direct radiolabeling of DOTA-based precursors.

作者信息

Lyashchenko Serge K, Tran Tuan, Happel Steffen, Park Hijin, Bauer David, Jones Kali, Esposito Tullio V, Pillarsetty NagaVaraKishore, Lewis Jason S

机构信息

Radiochemistry and Molecular Imaging Probe Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Radiochemistry and Molecular Imaging Probe Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nucl Med Biol. 2024 Sep-Oct;136-137:108943. doi: 10.1016/j.nucmedbio.2024.108943. Epub 2024 Jul 26.

Abstract

INTRODUCTION

Zirconium-89 (Zr) is a positron emitter with several advantages over other shorter-lived positron emission tomography (PET) compatible radiometals such as gallium-68 or copper-64. These include practically unlimited availability, extremely low cost, greatly facilitated distribution logistics, positron energy fit for medical PET imaging, and sufficiently long physical half-life to enable PET imaging at later time points for patient-specific dosimetry estimations. Despite these apparent benefits, the reception of Zr in the nuclear medicine community has been tepid. The driving factor for the absence of broader adaptation is mostly routed in its final formulation - [Zr]zirconium oxalate. While serving as a suitable precursor solution for the gold standard chelator deferoxamine (DFO), [Zr]Zr-oxalate is inaccessible for the most commonly used chelators, such as the macrocyclic DOTA, due to its pre-chelated state. Consequently, pioneering work has been conducted by multiple research groups to create oxalate-free forms of [Zr]Zr, either via chemical conversion of oxalate into other counterion forms or via direct radiochemical isolation of [Zr]ZrCl, showing that [Zr]Zr-DOTA complexes are possible and stable. However, this success was accompanied by challenges, including complex and labor-intensive radiochemical processing and radiolabeling procedures as well as the relatively minuscule conversion rates. Here, we report on the direct production of [Zr]ZrCl avoiding oxalate and metal contaminants to enable efficient radiolabeling of DOTA constructs.

METHODS

We based our direct production of [Zr]ZrCl on previously reported methods and further optimized its quality by including an additional iron-removing step using the TK400 Resin. Here, we avoided using oxalic acid and effectively minimized the content of trace metal contaminants. Our two-step purification procedure was automated, and we confirmed excellent radionuclide purity, minimal trace metals content, great reactivity over time, and high specific molar activity. In addition, DOTA-based PSMA-617 and DOTAGA-based PSMA-I&T were radiolabeled to demonstrate the feasibility of direct radiolabeling and to estimate the maximum apparent specific activities. Lastly, the biodistribution of [Zr]Zr-PSMA-617 was assessed in mice bearing PC3-PIP xenografts, and the results were compared to the previously published data.

RESULTS

A total of 18 batches, ranging from 6.9 to 20 GBq (186 to 541 mCi), were produced. The specific molar activity for [Zr]ZrCl exceeded 0.96 GBq (26 mCi) per nanomole of zirconium. The radionuclidic purity was >99 %, and the trace metals content was in the <1 ppm range. The [Zr]ZrCl remained in its reactive chemical form for at least five days when stored in cyclic olefin polymer (COP) vials. Batches of 11.1 GBq (300 mCi) of [Zr]Zr-PSMA-617 and 14.4 GBq (390 mCi) of [Zr]Zr-PSMA-I&T, corresponding to specific activities of 11.1 MBq/μg (0.3 mCi/μg), and 14.4 MBq/μg (0.39 mCi/μg), respectively, were produced. [Zr]Zr-PSMA-617 animal PET imaging results were in agreement with the previously published data.

CONCLUSION

In this work, we report on a suitable application of TK400 Resin to remove iron during [Zr]ZrCl radiochemical isolation. The breakthrough allows for direct radiolabeling of DOTA-based constructs with [Zr]ZrCl, leading to high apparent molar activities and excellent conversion rates.

摘要

引言

锆 - 89(Zr)是一种正电子发射体,与其他半衰期较短的正电子发射断层扫描(PET)兼容放射性金属(如镓 - 68或铜 - 64)相比具有多个优势。这些优势包括实际无限的可用性、极低的成本、极大简化的配送物流、适合医学PET成像的正电子能量以及足够长的物理半衰期,以便在稍后时间点进行PET成像以进行患者特异性剂量测定估计。尽管有这些明显的益处,但Zr在核医学领域的接受度一直不高。缺乏更广泛应用的驱动因素主要源于其最终制剂——草酸锆[Zr]。虽然草酸锆[Zr]作为金标准螯合剂去铁胺(DFO)的合适前体溶液,但由于其预螯合状态,对于最常用的螯合剂(如大环DOTA)而言,草酸锆[Zr]难以使用。因此,多个研究小组开展了开创性工作,通过将草酸盐化学转化为其他抗衡离子形式或通过直接放射化学分离[Zr]ZrCl来制备无草酸盐形式的[Zr]Zr,结果表明[Zr]Zr - DOTA配合物是可行且稳定的。然而,这一成功伴随着挑战,包括复杂且劳动密集的放射化学处理和放射性标记程序以及相对微小的转化率。在此,我们报告了直接制备[Zr]ZrCl的方法,该方法避免了草酸盐和金属污染物,从而能够高效地对DOTA构建体进行放射性标记。

方法

我们基于先前报道的方法直接制备[Zr]ZrCl,并通过使用TK400树脂增加额外的除铁步骤进一步优化其质量。在此,我们避免使用草酸,并有效降低了痕量金属污染物的含量。我们的两步纯化程序是自动化的,并且我们确认了优异的放射性核素纯度、极低的痕量金属含量、随时间良好的反应性以及高比摩尔活性。此外,对基于DOTA的PSMA - 617和基于DOTAGA的PSMA - I&T进行了放射性标记,以证明直接放射性标记的可行性并估计最大表观比活性。最后,在携带PC3 - PIP异种移植瘤的小鼠中评估了[Zr]Zr - PSMA - 617的生物分布,并将结果与先前发表的数据进行了比较。

结果

共制备了18批,活度范围为6.9至20 GBq(186至541 mCi)。[Zr]ZrCl的比摩尔活性超过每纳米摩尔锆0.96 GBq(26 mCi)。放射性核素纯度>99%,痕量金属含量在<1 ppm范围内。当储存在环烯烃聚合物(COP)小瓶中时,[Zr]ZrCl至少在五天内保持其反应性化学形式。制备了11.1 GBq(300 mCi)的[Zr]Zr - PSMA - 617批次和14.4 GBq(390 mCi)的[Zr]Zr - PSMA - I&T批次,其比活性分别为11.1 MBq/μg(0.3 mCi/μg)和14.4 MBq/μg(0.39 mCi/μg)。[Zr]Zr - PSMA - 617动物PET成像结果与先前发表的数据一致。

结论

在这项工作中,我们报告了TK400树脂在[Zr]ZrCl放射化学分离过程中用于去除铁的合适应用。这一突破使得能够用[Zr]ZrCl直接对基于DOTA的构建体进行放射性标记,从而实现高表观摩尔活性和优异的转化率。

相似文献

1
[Zr]ZrCl for direct radiolabeling of DOTA-based precursors.用于基于DOTA的前体直接放射性标记的[锆]氯化锆
Nucl Med Biol. 2024 Sep-Oct;136-137:108943. doi: 10.1016/j.nucmedbio.2024.108943. Epub 2024 Jul 26.
5
Evaluation and selection of a lead diabody for interferon-γ PET imaging.针对干扰素-γ PET 成像的先导抗体的评估和选择。
Nucl Med Biol. 2022 Nov-Dec;114-115:162-167. doi: 10.1016/j.nucmedbio.2022.06.001. Epub 2022 Jun 17.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验