Suppr超能文献

具有铁/铁循环与氧空位协同效应的镧掺杂铁钼酸盐增强了电催化合成氨的性能。

La doped-Fe(MoO) with the synergistic effect between Fe/Fe cycling and oxygen vacancies enhances the electrocatalytic synthesizing NH.

作者信息

Zhang Hexin, Zhou Weichi, Hu Liangqing, Guo Yanming, Lu Yinpeng, Feng Jing

机构信息

Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.

Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.

出版信息

J Colloid Interface Sci. 2025 Jan;677(Pt A):264-272. doi: 10.1016/j.jcis.2024.07.226. Epub 2024 Jul 30.

Abstract

The electrocatalytic nitrogen reduction reaction (NRR) is a crucial process in addressing energy shortages and environmental concerns by synthesizing the NH. However, the difficulty of N activation and fewer NRR active sites limit the application of NRR. Therefore, the NRR performance can be improved by rapid electron transport paths to participate in multi-electron reactions and N activation. Doping with transition metal element is a viable strategy to provide electrons and electronic channels in the NRR. This study focuses on the synthesis of Fe(MoO) (FeMo) and x%La-doped FeMo (x = 3, 5, 7, and 10) using the hydrothermal method. La-doping creates electron transport channels Fe-O-Fe and oxygen vacancies, achieving an equal molar ratio of Fe/Fe. This strategy enables the super-exchange in Fe-O-Fe, and then enhances electron transport speed for a rapid hydrogenation reaction. Therefore, the synergistic effect of Fe/Fe cycling and oxygen vacancies improves the NRR performance. Notably, 5%La-FeMo demonstrates the superior NRR performance (NH yield rate: 29.6 μg h mg, Faradaic efficiency: 5.8%) at -0.8 V (vs. RHE). This work analyzes the influence of the catalyst electronic environment on the NRR performance based on the effect on different valence states of ions on electron transport.

摘要

电催化氮还原反应(NRR)是通过合成NH₃来解决能源短缺和环境问题的关键过程。然而,氮活化的困难和较少的NRR活性位点限制了NRR的应用。因此,可以通过快速电子传输路径参与多电子反应和氮活化来提高NRR性能。掺杂过渡金属元素是在NRR中提供电子和电子通道的可行策略。本研究重点采用水热法合成Fe(MoO₄)₂(FeMo)和x%La掺杂的FeMo(x = 3、5、7和10)。La掺杂形成了Fe-O-Fe电子传输通道和氧空位,实现了Fe²⁺/Fe³⁺的等摩尔比。这种策略能够在Fe-O-Fe中实现超交换,进而提高电子传输速度以进行快速氢化反应。因此,Fe²⁺/Fe³⁺循环和氧空位的协同效应提高了NRR性能。值得注意的是,5%La-FeMo在-0.8 V(相对于可逆氢电极,RHE)时表现出优异的NRR性能(NH₃产率:29.6 μg h⁻¹ mg⁻¹,法拉第效率:5.8%)。这项工作基于离子不同价态对电子传输的影响,分析了催化剂电子环境对NRR性能的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验