Suppr超能文献

基于Transformer 的人工智能技术利用 cfDNA 甲基化标志物提高早期卵巢癌诊断水平。

Transformer-based AI technology improves early ovarian cancer diagnosis using cfDNA methylation markers.

机构信息

Guangzhou Women and Children's Medical Center, Guangzhou, China.

Guangzhou Women and Children's Medical Center, Guangzhou, China.

出版信息

Cell Rep Med. 2024 Aug 20;5(8):101666. doi: 10.1016/j.xcrm.2024.101666. Epub 2024 Aug 1.

Abstract

Epithelial ovarian cancer (EOC) is the deadliest women's cancer and has a poor prognosis. Early detection is the key for improving survival (a 5-year survival rate in stage I/II is over 70% compared to that of 25% in stage III/IV) and can be achieved through methylation markers from circulating cell-free DNA (cfDNA) using a liquid biopsy. In this study, we first identify top 500 EOC markers differentiating EOC from healthy female controls from 3.3 million methylome-wide CpG sites and validated them in 1,800 independent cfDNA samples. We then utilize a pretrained AI transformer system called MethylBERT to develop an EOC diagnostic model which achieves 80% sensitivity and 95% specificity in early-stage EOC diagnosis. We next develop a simple digital droplet PCR (ddPCR) assay which archives good performance, facilitating early EOC detection.

摘要

上皮性卵巢癌 (EOC) 是女性癌症中致死率最高的一种,且预后较差。早期检测是提高生存率的关键(I/II 期的 5 年生存率超过 70%,而 III/IV 期的生存率仅为 25%),可通过液体活检中的循环无细胞游离 DNA (cfDNA) 甲基化标志物实现。在这项研究中,我们首先从 330 万个甲基化组宽 CpG 位点中确定了前 500 个区分 EOC 与健康女性对照的 EOC 标志物,并在 1800 个独立的 cfDNA 样本中进行了验证。然后,我们利用一种名为 MethylBERT 的预训练 AI 转换器系统开发了一种 EOC 诊断模型,该模型在早期 EOC 诊断中实现了 80%的敏感性和 95%的特异性。接下来,我们开发了一种简单的数字液滴 PCR (ddPCR) 检测方法,其性能良好,有助于早期检测 EOC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/592d/11384945/fc4e3ff0115d/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验