Zheng Zhijuan, Liang Yuying, Wu Zhehao, Han Qijia, Ai Zhu, Ma Kun, Xiang Zhiming
Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.
CT Imaging Research Center, GE HealthCare China, Guangzhou, China.
J Comput Assist Tomogr. 2024;48(6):943-950. doi: 10.1097/RCT.0000000000001634. Epub 2024 Aug 2.
The purpose of this study is to explore the impact of deep learning image reconstruction (DLIR) algorithm on the quantification of radiomic features in ultra-low-dose computed tomography (ULD-CT) compared with adaptive statistical iterative reconstruction-Veo (ASIR-V).
One hundred eighty-three patients with pulmonary nodules underwent standard-dose computed tomography (SDCT) (4.30 ± 0.36 mSv) and ULD-CT (UL-A, 0.57 ± 0.09 mSv or UL-B, 0.33 ± 0.04 mSv). SDCT was the reference standard using (ASIR-V) at 50% strength (50%ASIR-V). ULD-CT was reconstructed with 50%ASIR-V, DLIR at medium and high strength (DLIR-M, DLIR-H). Radiomics analysis extracted 102 features, and the intraclass correlation coefficient (ICC) quantified reproducibility between ULD-CT and SDCT reconstructed by 50%ASIR-V, DLIR-M, and DLIR-H for each feature.
Among 102 radiomic features, the percentages of reproducibility of 50%ASIR-V, DLIR-M, and DLIR-H were 48.04% (49/102), 49.02% (50/102), and 52.94% (54/102), respectively. Shape and first order features demonstrated high reproducibility across different reconstruction algorithms and radiation doses, with mean ICC values exceeding 0.75. In texture features, DLIR-M and DLIR-H showed improved mean ICC values for pure ground glass nodules (pGGNs) from 0.69 ± 0.23 to 0.75 ± 0.18 and 0.81 ± 0.12, respectively, compared with 50%ASIR-V. Similarly, the mean ICC values for solid nodules (SNs) increased from 0.60 ± 0.19 to 0.66 ± 0.14 and 0.69 ± 0.13, respectively. Additionally, the mean ICC values of texture features for pGGNs and SNs in both ULD-CT groups decreased with reduced radiation dose.
DLIR can improve the reproducibility of radiomic features at ultra-low doses compared with ASIR-V. In addition, pGGNs showed better reproducibility at ultra-low doses than SNs.
本研究旨在探讨深度学习图像重建(DLIR)算法与自适应统计迭代重建-Veo(ASIR-V)相比,对超低剂量计算机断层扫描(ULD-CT)中放射组学特征定量的影响。
183例肺结节患者接受了标准剂量计算机断层扫描(SDCT)(4.30±0.36 mSv)和ULD-CT(UL-A,0.57±0.09 mSv或UL-B,0.33±0.04 mSv)。SDCT作为参考标准,采用50%强度的(ASIR-V)(50%ASIR-V)。ULD-CT采用50%ASIR-V、中高强度的DLIR(DLIR-M、DLIR-H)进行重建。放射组学分析提取了102个特征,并通过组内相关系数(ICC)对每个特征在由50%ASIR-V、DLIR-M和DLIR-H重建的ULD-CT与SDCT之间的可重复性进行了量化。
在102个放射组学特征中,50%ASIR-V、DLIR-M和DLIR-H的可重复性百分比分别为48.04%(49/102)、49.02%(50/102)和52.94%(54/102)。形状和一阶特征在不同的重建算法和辐射剂量下显示出高可重复性,平均ICC值超过0.75。在纹理特征方面,与50%ASIR-V相比,DLIR-M和DLIR-H使纯磨玻璃结节(pGGN)的平均ICC值分别从0.69±0.23提高到0.75±0.18和0.81±0.12。同样,实性结节(SN)的平均ICC值分别从0.60±0.19提高到0.66±0.14和0.69±0.13。此外,两个ULD-CT组中pGGN和SN的纹理特征平均ICC值均随辐射剂量降低而降低。
与ASIR-V相比,DLIR可提高超低剂量下放射组学特征的可重复性。此外,pGGN在超低剂量下比SN表现出更好的可重复性。