Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium.
Faculty of Medicine, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
Cancer Imaging. 2024 May 9;24(1):60. doi: 10.1186/s40644-024-00703-w.
This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable.
A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models.
Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR.
We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.
本研究系统比较了创新的深度学习图像重建(DLIR,TrueFidelity)与传统迭代重建(IR)对极低辐射剂量下结节体积测量和主观图像质量(IQ)的影响。这在低剂量 CT 肺癌筛查中至关重要,在这种情况下,在重复 CT 扫描中准确测量和描述肺结节是必不可少的。
使用包含一组 3D 打印肺结节的人体胸部模型(Lungman,京都 Kaguku Inc.,京都,日本)建立了一个标准化的 CT 数据集,这些肺结节包含六个直径(4 至 9 毫米)和三个形态类别(分叶状、刺状、光滑状),并具有既定的真实情况。在不同的辐射剂量(6.04、3.03、1.54、0.77、0.41 和 0.20 mGy)下采集图像,并使用不同的重建核(软核和硬核)和重建算法(ASIR-V 和低、中、高强度下的 DLIR)进行组合重建。由五名放射科医生进行半自动化体积测量和主观图像质量评分,并使用多元线性回归和混合效应有序逻辑回归模型进行分析。
与 ASIR-V 相比,使用 DLIR 成像的结节体积误差最高可达 50%,尤其是在辐射剂量低于 1 mGy 且使用硬核重建时。此外,在所有结节直径和形态中,DLIR 通常可降低体积误差。此外,DLIR 可提供更高的主观 IQ,尤其是在亚毫戈瑞剂量下。与使用 ASIR-V 重建的图像相比,放射科医生对这些图像评分最高 IQ 评分的可能性高达九倍。具有不规则边缘和小直径的肺结节在使用 DLIR 重建时,被赋予最佳 IQ 评分的可能性也增加了(高达五倍)。
我们观察到,在人体胸部模型中,DLIR 在结节的体积准确性和主观 IQ 方面与传统使用的重建算法一样出色,甚至表现更好。因此,DLIR 有可能在不影响肺结节准确测量和描述的情况下,降低肺癌筛查参与者的辐射剂量。