Suppr超能文献

用改进的色差方程弥合仪器和视觉感知差距:一项多中心研究。

Bridging instrumental and visual perception with improved color difference equations: A multi-center study.

机构信息

School of Design, University of Leeds, Leeds, UK.

Prosthodontic Division, Department for Restorative Science and Biomaterials, Boston University Henry M. Goldman School of Dental Medicine, Boston, USA; Medical Center, University of Freiburg, Center for Dental Medicine, Department of Prosthetic Dentistry, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

出版信息

Dent Mater. 2024 Oct;40(10):1497-1506. doi: 10.1016/j.dental.2024.07.003. Epub 2024 Aug 1.

Abstract

OBJECTIVES

This multicenter study aimed to evaluate visual-instrumental agreement of six color measurement devices and optimize three color difference equations using a dataset of visual color differences (∆V) from expert observers.

METHODS

A total of 154 expert observers from 16 sites across 5 countries participated, providing visual scaling on 26 sample pairs of artificial teeth using magnitude estimation. Three color difference equations (ΔE*, ∆E, and CAM16-UCS) were tested. Optimization of all three equations was performed using device-specific weights, and the standardized residual sum of squares (STRESS) index was used to evaluate visual-instrumental agreement.

RESULTS

The ΔE* formula exhibited STRESS values from 18 to 40, with visual-instrumental agreement between 60 % and 82 %. The ∆E formula showed STRESS values from 26 to 32, representing visual-instrumental agreement of 68 % to 74 %. CAM16-UCS demonstrated STRESS values from 32 - 39, with visual-instrumental agreement between 61-68 %. Following optimization, STRESS values decreased for all three formulas, with ΔE demonstrating average visual-instrumental agreement of 79 % and ∆E of 78 %. CAM16-UCS showed average visual-instrumental agreement of 76 % post optimization.

SIGNIFICANCE

Optimization of color difference equations notably improved visual-instrumental agreement, overshadowing device performance. The optimzed ΔE formula demonstrated the best overall performance combining computational simplicty with outstanding visual-instrumental agreement.

摘要

目的

本多中心研究旨在评估六种颜色测量设备的视觉仪器一致性,并使用来自专家观察者的视觉色差(∆V)数据集优化三个色差方程。

方法

共有来自 5 个国家 16 个地点的 154 名专家观察员参与,使用幅度估计法对 26 对人工牙样本对进行视觉标度。测试了三种色差方程(ΔE*、∆E 和 CAM16-UCS)。使用设备特定权重对所有三个方程进行了优化,并使用标准化残差和(STRESS)指数评估视觉仪器一致性。

结果

ΔE*公式的 STRESS 值为 18 至 40,视觉仪器一致性为 60%至 82%。∆E 公式的 STRESS 值为 26 至 32,代表 68%至 74%的视觉仪器一致性。CAM16-UCS 的 STRESS 值为 32-39,视觉仪器一致性为 61-68%。优化后,所有三个公式的 STRESS 值均降低,ΔE 平均视觉仪器一致性为 79%,∆E 为 78%。CAM16-UCS 优化后的平均视觉仪器一致性为 76%。

意义

色差方程的优化显著提高了视觉仪器的一致性,超过了设备性能。优化后的ΔE 公式在具有出色视觉仪器一致性的同时,还具有计算简单的最佳整体性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验