Suppr超能文献

机器学习预测与靶标相关和非靶标相关的临床不良事件。

Machine Learning Prediction of On/Off Target-driven Clinical Adverse Events.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, United States.

Centennial High School, Ellicott City, MD, 21042, United States.

出版信息

Pharm Res. 2024 Aug;41(8):1649-1658. doi: 10.1007/s11095-024-03742-x. Epub 2024 Aug 2.

Abstract

OBJECTIVE

Currently, 90% of clinical drug development fails, where 30% of these failures are due to clinical toxicity. The current extensive animal toxicity studies are not predictive of clinical adverse events (AEs) at clinical doses, while current computation models only consider very few factors with limited success in clinical toxicity prediction. We aimed to address these issues by developing a machine learning (ML) model to directly predict clinical AEs.

METHODS

Using a dataset with 759 FDA-approved drugs with known AEs, we first adapted the ConPLex ML model to predict IC values of these FDA-approved drugs against their on-target and off-target binding among 477 protein targets. Subsequently, we constructed a new ML model to predict clinical AEs using IC values of 759 drugs' primary on-target and off-target effects along with tissue-specific protein expression profiles.

RESULTS

The adapted ConPLex model predicted drug-target interactions for both on- and off-target effects, as shown by co-localization of the 6 small molecule kinase inhibitors with their respective kinases. The coupled ML models demonstrated good predictive capability of clinical AEs, with accuracy over 75%.

CONCLUSIONS

Our approach provides a new insight into the mechanistic understanding of in vivo drug toxicity in relationship with drug on-/off-target interactions. The coupled ML models, once validated with larger datasets, may offer advantages to directly predict clinical AEs using in vitro/ex vivo and preclinical data, which will help to reduce drug development failure due to clinical toxicity.

摘要

目的

目前,90%的临床药物开发失败,其中 30%的失败是由于临床毒性。目前广泛的动物毒性研究不能预测临床剂量下的临床不良事件 (AE),而目前的计算模型仅考虑了很少的因素,在临床毒性预测方面的成功率有限。我们旨在通过开发一种机器学习 (ML) 模型来直接预测临床 AE 来解决这些问题。

方法

使用包含 759 种已批准的具有已知 AE 的药物的数据集,我们首先调整了 ConPLex ML 模型,以预测这些已批准的药物对 477 种蛋白质靶标中其靶标和非靶标结合的 IC50 值。随后,我们构建了一个新的 ML 模型,使用 759 种药物的主要靶标和非靶标效应的 IC50 值以及组织特异性蛋白表达谱来预测临床 AE。

结果

调整后的 ConPLex 模型预测了药物-靶标相互作用的靶标和非靶标效应,6 种小分子激酶抑制剂与其各自的激酶存在共定位。耦合 ML 模型显示出对临床 AE 的良好预测能力,准确率超过 75%。

结论

我们的方法为理解与药物靶标/非靶标相互作用相关的体内药物毒性的机制提供了新的见解。一旦用更大的数据集进行验证,耦合 ML 模型可以利用体外/体外和临床前数据直接预测临床 AE,这将有助于减少因临床毒性导致的药物开发失败。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验