Michels Valentin, Chou Chunwei, Weigand Maximilian, Wu Yuxin, Kemna Andreas
Geophysics Section, Institute of Geosciences, University of Bonn, Meckenheimer Allee 176, Bonn, 53115, NRW, Germany.
Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 94720, CA, USA.
Plant Methods. 2024 Aug 2;20(1):118. doi: 10.1186/s13007-024-01247-7.
Root systems are key contributors to plant health, resilience, and, ultimately, yield of agricultural crops. To optimize plant performance, phenotyping trials are conducted to breed plants with diverse root traits. However, traditional analysis methods are often labour-intensive and invasive to the root system, therefore limiting high-throughput phenotyping. Spectral electrical impedance tomography (sEIT) could help as a non-invasive and cost-efficient alternative to optical root analysis, potentially providing 2D or 3D spatio-temporal information on root development and activity. Although impedance measurements have been shown to be sensitive to root biomass, nutrient status, and diurnal activity, only few attempts have been made to employ tomographic algorithms to recover spatially resolved information on root systems. In this study, we aim to establish relationships between tomographic electrical polarization signatures and root traits of different fine root systems (maize, pinto bean, black bean, and soy bean) under hydroponic conditions.
Our results show that, with the use of an optimized data acquisition scheme, sEIT is capable of providing spatially resolved information on root biomass and root surface area for all investigated root systems. We found strong correlations between the total polarization strength and the root biomass ( ) and root surface area ( ). Our findings suggest that the captured polarization signature is dominated by cell-scale polarization processes. Additionally, we demonstrate that the resolution characteristics of the measurement scheme can have a significant impact on the tomographic reconstruction of root traits.
Our findings showcase that sEIT is a promising tool for the tomographic reconstruction of root traits in high-throughput root phenotyping trials and should be evaluated as a substitute for traditional, often time-consuming, root characterization methods.
根系是影响作物健康、抗逆性及最终产量的关键因素。为优化作物表现,开展了表型试验以培育具有不同根系性状的植株。然而,传统分析方法往往 labor-intensive 且会对根系造成侵入性伤害,因此限制了高通量表型分析。光谱电阻抗断层成像(sEIT)作为一种非侵入性且经济高效的光学根系分析替代方法,可能提供根系发育和活性的二维或三维时空信息。尽管已证明阻抗测量对根系生物量、养分状况和昼夜活动敏感,但仅有少数尝试采用断层成像算法来获取根系的空间分辨信息。在本研究中,我们旨在建立水培条件下断层电极化特征与不同细根系统(玉米、菜豆、黑豆和大豆)根系性状之间的关系。
我们的结果表明,通过使用优化的数据采集方案,sEIT 能够为所有研究的根系系统提供根系生物量和根表面积的空间分辨信息。我们发现总极化强度与根系生物量( )和根表面积( )之间存在强相关性。我们的研究结果表明,捕获的极化特征主要由细胞尺度的极化过程主导。此外,我们证明了测量方案的分辨率特征对根系性状的断层重建有显著影响。
我们的研究结果表明,sEIT 是高通量根系表型试验中根系性状断层重建的一种有前途的工具,应作为传统的、通常耗时的根系表征方法的替代方法进行评估。