Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, P.R. China.
Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, P.R. China.
FASEB J. 2024 Aug 15;38(15):e23854. doi: 10.1096/fj.202400283R.
The onset and progression of atherosclerosis are closely linked to the involvement of macrophages. While the contribution of NLRP3 inflammasome activation to the creation of a local highly inflammatory microenvironment is well recognized, the precise triggers remain unclear. In this study, we aimed to investigate the regulatory mechanism of NLRP3 inflammasome activation in response to hypoxia-induced glycolysis involving PFKFB3 in the development of atherosclerosis. To develop an atherosclerosis model, we selected ApoE knockout mice treated with a high-fat western diet. We then quantified the expression of HIF-1α, PFKFB3, and NLRP3. In addition, we administered the PFKFB3 inhibitor PFK158 during atherosclerosis modeling. The glycolytic activity was subsequently determined through F-FDG micro-PET/CT, ex vivo glucose uptake, and ECAR analysis. Furthermore, we employed lipopolysaccharide (LPS) and TNF-α to induce the differentiation of bone marrow-derived macrophages (BMDMs) into M1-like phenotypes under both hypoxic and normoxic conditions. Our histological analyses revealed the accumulation of PFKFB3 in human atherosclerotic plaques, demonstrating colocalization with NLRP3 expression and macrophages. Treatment with PFK158 reduced glycolytic activity and NLRP3 inflammasome activation, thereby mitigating the occurrence of atherosclerosis. Mechanistically, hypoxia promoted glycolytic reprogramming and NLRP3 inflammasome activation in BMDMs. Subsequent blocking of either HIF-1α or PFKFB3 downregulated the NLRP3/Caspase-1/IL-1β pathway in hypoxic BMDMs. Our study demonstrated that the HIF-1α/PFKFB3/NLRP3 axis serves as a crucial mechanism for macrophage inflammation activation in the emergence of atherosclerosis. The therapeutic potential of PFKFB3 inhibition may represent a promising strategy for atheroprotection.
动脉粥样硬化的发生和进展与巨噬细胞的参与密切相关。虽然 NLRP3 炎性小体的激活在局部高度炎症微环境的形成中作用已得到广泛认可,但确切的触发因素仍不清楚。在本研究中,我们旨在研究 NLRP3 炎性小体激活的调节机制,以应对缺氧诱导的糖酵解中 PFKFB3 的参与,从而研究其在动脉粥样硬化发生发展中的作用。为了建立动脉粥样硬化模型,我们选择了高脂西方饮食喂养的 ApoE 基因敲除小鼠,并对 HIF-1α、PFKFB3 和 NLRP3 的表达进行了定量分析。此外,我们在动脉粥样硬化模型建立期间给予 PFKFB3 抑制剂 PFK158。通过 F-FDG 微 PET/CT、细胞外葡萄糖摄取和 ECAR 分析来测定糖酵解活性。进一步,我们采用脂多糖(LPS)和 TNF-α 在缺氧和常氧条件下诱导骨髓来源的巨噬细胞(BMDMs)向 M1 样表型分化。我们的组织学分析显示,PFKFB3 在人动脉粥样硬化斑块中的积累,与 NLRP3 表达和巨噬细胞共定位。PFK158 的治疗降低了糖酵解活性和 NLRP3 炎性小体的激活,从而减轻了动脉粥样硬化的发生。机制上,缺氧促进了 BMDMs 中的糖酵解重编程和 NLRP3 炎性小体的激活。随后阻断 HIF-1α 或 PFKFB3 均可下调缺氧 BMDMs 中的 NLRP3/Caspase-1/IL-1β 通路。本研究表明,HIF-1α/PFKFB3/NLRP3 轴是巨噬细胞炎症激活在动脉粥样硬化发生中的关键机制。PFKFB3 抑制的治疗潜力可能代表了一种有前途的动脉粥样硬化保护策略。