Suppr超能文献

用于质子交换膜燃料电池中高质子传导的拉伸Nafion/聚偏氟乙烯共混膜中的协同分子排列和偶极极化

Synergistic Molecular Alignment and Dipole Polarization in Stretched Nafion/Poly(vinylidene fluoride) Blend Membranes for High Proton Conduction in PEMFCs.

作者信息

Lee Iksu, Lee Jaekeun, Lee Dongjun, Kim Seungbin, Kim Seong K, Bae Insung

机构信息

Department of Advanced Materials, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.

Department of Chemical Engineering, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42164-42175. doi: 10.1021/acsami.4c06637. Epub 2024 Aug 3.

Abstract

The nanostructure of Nafion and poly(vinylidene fluoride) (PVDF) blend membranes is successfully aligned through a mechanical uniaxial stretching method. The phase-separated morphology of Nafion molecules distinctly forms hydrophilic proton channels with increased connectivity, resulting in enhanced proton conductivity. Additionally, the crystalline phase of PVDF molecules undergoes a successful transformation from the α- to β-phase during membrane stretching, demonstrating an alignment of fluorine and hydrogen atoms with a TTTT(trans) structure. The aligned nanostructure of the blend film, combined with the dipole polarization of the β-phase PVDF, synergistically enhances the proton conduction through the membrane for operating proton-exchange membrane fuel cells (PEMFCs). The controlled structures of the blend membranes are thoroughly investigated using atomic force microscopy and small-angle X-ray scattering. Furthermore, the improved in-plane proton conductivity facilitates increased proton conduction at the interface between the membrane and catalyst layer in the membrane-electrode assembly, ultimately enhancing the power generation of PEMFCs.

摘要

通过机械单轴拉伸法成功实现了Nafion与聚偏氟乙烯(PVDF)共混膜的纳米结构取向。Nafion分子的相分离形态明显形成了连通性增强的亲水质子通道,从而提高了质子传导率。此外,在膜拉伸过程中,PVDF分子的晶相成功地从α相转变为β相,显示出氟原子和氢原子以TTTT(反式)结构排列。共混膜的取向纳米结构与β相PVDF的偶极极化相结合,协同增强了通过膜的质子传导,用于运行质子交换膜燃料电池(PEMFC)。使用原子力显微镜和小角X射线散射对共混膜的可控结构进行了深入研究。此外,平面内质子传导率的提高有助于在膜电极组件中膜与催化剂层之间的界面处增加质子传导,最终提高PEMFC的发电能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验