Wu Xiaomei, Li Shijia, Chen Liqin, Ma Siwei, Ma Bin, Song Lijuan, Qian Deyun
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China.
School of Chemical Science and Technology, Yunnan University, Kunming 650500, China.
J Am Chem Soc. 2024 Aug 14;146(32):22413-22423. doi: 10.1021/jacs.4c05485. Epub 2024 Aug 3.
Stereochemically pure saccharides have indispensable roles in fields ranging from medicinal chemistry to materials science and organic synthesis. However, the development of a simple, stereoselective, and efficient glycosylation protocol to access α- and β-C-glycosides (particularly 2-deoxy entities) remains a persistent challenge. Existing studies have primarily focused on C1 modification of carbohydrates and transformation of glycosyl radical precursors. Here, we innovate by harnessing the in situ generated glycosyl-Ni species to achieve one-pot borylation and glycosylation in a cascade manner, which is enabled by an earth-abundant nickel-catalyzed carboboration of readily accessible glycals without any ligand. This work reveals the potential for the development of a modular and multifunctional glycosylation platform to facilitate the simultaneous introduction of C-C and C-B bonds at the stereogenic center of saccharides, a largely unexploited research area. Preliminary experimental and computational studies indicate that the endocyclic O and the C3 group play important roles in stereoseclectively forging glycosidic bonds. As a result, a diverse range of C-R (R = alkyl, aryl, and alkenyl) and 2-deoxygenated glycosides bearing modifiable boron groups could be rapidly made with excellent stereocontrol and exhibit remarkable functional group tolerance. The synthetic potential is underscored in the late-stage glycosylation of natural products and commercial drugs as well as the facile preparation of various rare sugars, bioactive conjugates, and key intermediates to prorocentin, phomonol, and aspergillide A.
立体化学纯的糖类在从药物化学到材料科学和有机合成等领域发挥着不可或缺的作用。然而,开发一种简单、立体选择性且高效的糖基化方案以获得α-和β-C-糖苷(特别是2-脱氧实体)仍然是一个长期存在的挑战。现有研究主要集中在碳水化合物的C1修饰和糖基自由基前体的转化上。在此,我们通过利用原位生成的糖基镍物种以级联方式实现一锅硼化和糖基化,这是通过一种地球上储量丰富的镍催化易获得的糖烯的碳硼化反应实现的,无需任何配体。这项工作揭示了开发模块化和多功能糖基化平台的潜力,以促进在糖类的立体中心同时引入C-C键和C-B键,这是一个很大程度上未被开发的研究领域。初步的实验和计算研究表明,内环O和C3基团在立体选择性地形成糖苷键中起重要作用。因此,可以以优异的立体控制快速制备各种带有可修饰硼基团的C-R(R = 烷基、芳基和烯基)和2-脱氧糖苷,并表现出显著的官能团耐受性。天然产物和商业药物的后期糖基化以及各种稀有糖、生物活性缀合物以及制备原罗菌素、腐草霉素和曲霉内酯A的关键中间体的简便制备突出了这种合成潜力。