Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States.
Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.
J Am Chem Soc. 2017 Dec 13;139(49):17908-17922. doi: 10.1021/jacs.7b08707. Epub 2017 Nov 30.
Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd(dba) (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the β-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the β-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric position. Taken together, facile access to both anomers of various glycoside nucleophiles, a broad reaction scope, and uniformly high transfer of anomeric configuration make the glycosyl cross-coupling reaction a practical tool for the synthesis of bioactive natural products, drug candidates, allowing for late-stage glycodiversification studies with small molecules and biologics.
糖的 C1 位的立体选择性操作是制备碳水化合物化学的主要目标之一。从历史上看,与糖的亲核试剂形成键的大多数反应都集中在带有离去基团的糖供体上的亲核试剂的反应上。在这里,我们描述了一种利用非对映选择性亲核试剂的高立体特异性反应来立体选择性合成 C-芳基糖苷的新方法。首先,开发并优化了制备非对映选择性的糖基锡烷的方法,以高非对映选择性提供常见糖的两种非对映异构体。我们确定了通过 Schmidt 型供体、糖醛氧化物或在脱水条件下用 C1 醇进行 O-糖苷化,都可以从单糖锡烷制备低聚糖锡烷。其次,我们确定了一组通用的催化条件,使用 Pd(dba)(2.5mol%)和一个大位阻配体(JackiePhos,10mol%)控制β-消除途径。我们证明,糖苷基交叉偶联导致单糖和低聚糖、脱氧糖、带有游离羟基的糖、吡喃糖和呋喃糖底物的两种非对映异构体的糖苷化均具有始终如一的高非对映选择性。糖苷基交叉偶联反应的多功能性在 salmochelin(铁载体)和商业抗糖尿病药物(gliflozins)的全合成中进行了探测。实验和计算研究表明,由于空间位阻较大的 JackiePhos 屏蔽了 Pd(II),因此对于联苯型配体,β-消除途径受到抑制,而较小的配体允许形成 Pd-F 络合物,主要导致糖醛产物。类似的空间位阻效应解释了 1,2-顺式 C1-锡烷与芳基卤化物的交叉偶联速率降低的原因。DFT 计算还表明,转金属化通过保留非对映位置构型的环状过渡态发生。综上所述,各种糖苷亲核试剂的两种非对映异构体的简便获得、广泛的反应范围以及非对映构型的均匀转移使得糖苷基交叉偶联反应成为生物活性天然产物、药物候选物合成的实用工具,允许小分子和生物制品的后期糖基多样化研究。