Suppr超能文献

糖基交叉偶联反应:反应范围、反应机理及其在芳基 C-糖苷合成中的应用。

Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides.

机构信息

Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States.

Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.

出版信息

J Am Chem Soc. 2017 Dec 13;139(49):17908-17922. doi: 10.1021/jacs.7b08707. Epub 2017 Nov 30.

Abstract

Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd(dba) (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the β-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the β-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric position. Taken together, facile access to both anomers of various glycoside nucleophiles, a broad reaction scope, and uniformly high transfer of anomeric configuration make the glycosyl cross-coupling reaction a practical tool for the synthesis of bioactive natural products, drug candidates, allowing for late-stage glycodiversification studies with small molecules and biologics.

摘要

糖的 C1 位的立体选择性操作是制备碳水化合物化学的主要目标之一。从历史上看,与糖的亲核试剂形成键的大多数反应都集中在带有离去基团的糖供体上的亲核试剂的反应上。在这里,我们描述了一种利用非对映选择性亲核试剂的高立体特异性反应来立体选择性合成 C-芳基糖苷的新方法。首先,开发并优化了制备非对映选择性的糖基锡烷的方法,以高非对映选择性提供常见糖的两种非对映异构体。我们确定了通过 Schmidt 型供体、糖醛氧化物或在脱水条件下用 C1 醇进行 O-糖苷化,都可以从单糖锡烷制备低聚糖锡烷。其次,我们确定了一组通用的催化条件,使用 Pd(dba)(2.5mol%)和一个大位阻配体(JackiePhos,10mol%)控制β-消除途径。我们证明,糖苷基交叉偶联导致单糖和低聚糖、脱氧糖、带有游离羟基的糖、吡喃糖和呋喃糖底物的两种非对映异构体的糖苷化均具有始终如一的高非对映选择性。糖苷基交叉偶联反应的多功能性在 salmochelin(铁载体)和商业抗糖尿病药物(gliflozins)的全合成中进行了探测。实验和计算研究表明,由于空间位阻较大的 JackiePhos 屏蔽了 Pd(II),因此对于联苯型配体,β-消除途径受到抑制,而较小的配体允许形成 Pd-F 络合物,主要导致糖醛产物。类似的空间位阻效应解释了 1,2-顺式 C1-锡烷与芳基卤化物的交叉偶联速率降低的原因。DFT 计算还表明,转金属化通过保留非对映位置构型的环状过渡态发生。综上所述,各种糖苷亲核试剂的两种非对映异构体的简便获得、广泛的反应范围以及非对映构型的均匀转移使得糖苷基交叉偶联反应成为生物活性天然产物、药物候选物合成的实用工具,允许小分子和生物制品的后期糖基多样化研究。

相似文献

1
Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides.
J Am Chem Soc. 2017 Dec 13;139(49):17908-17922. doi: 10.1021/jacs.7b08707. Epub 2017 Nov 30.
2
Rethinking Carbohydrate Synthesis: Stereoretentive Reactions of Anomeric Stannanes.
Chemistry. 2019 Mar 1;25(13):3147-3155. doi: 10.1002/chem.201803082. Epub 2018 Dec 13.
3
Glycosyl Cross-Coupling with Diaryliodonium Salts: Access to Aryl C-Glycosides of Biomedical Relevance.
Org Lett. 2018 Apr 6;20(7):1936-1940. doi: 10.1021/acs.orglett.8b00475. Epub 2018 Mar 12.
4
Highly Stereospecific Cross-Coupling Reactions of Anomeric Stannanes for the Synthesis of C-Aryl Glycosides.
J Am Chem Soc. 2016 Sep 21;138(37):12049-52. doi: 10.1021/jacs.6b07891. Epub 2016 Sep 13.
5
6
Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles.
J Am Chem Soc. 2020 Jun 24;142(25):11102-11113. doi: 10.1021/jacs.0c03298. Epub 2020 Jun 10.
7
8
Stereoretentive Reactions at the Anomeric Position: Synthesis of Selenoglycosides.
Angew Chem Int Ed Engl. 2018 Jun 11;57(24):7091-7095. doi: 10.1002/anie.201802847. Epub 2018 May 14.
9
Copper-Catalyzed Stereoselective Borylation and Palladium-Catalyzed Stereospecific Cross-Coupling to Give Aryl C-Glycosides.
Chemistry. 2023 Jan 27;29(6):e202203376. doi: 10.1002/chem.202203376. Epub 2022 Dec 8.
10
2-nitroglycals as powerful glycosyl donors: application in the synthesis of biologically important molecules.
Acc Chem Res. 2008 Aug;41(8):1059-73. doi: 10.1021/ar7002495. Epub 2008 Jul 4.

引用本文的文献

1
Re-evaluation of the -Glucosyltransferase IroB Illuminates Its Ability to -Glucosylate Non-native Triscatecholate Enterobactin Mimics.
Biochemistry. 2025 Jan 7;64(1):224-237. doi: 10.1021/acs.biochem.4c00581. Epub 2024 Dec 24.
2
Electrochemical Glycosylation via Halogen-Atom-Transfer for -Glycoside Assembly.
ACS Catal. 2024 Jul 19;14(15):11532-11544. doi: 10.1021/acscatal.4c02322. eCollection 2024 Aug 2.
3
Diverse Synthesis of C-Glycosides by Stereoselective Ni-Catalyzed Carboboration of Glycals.
J Am Chem Soc. 2024 Jul 17;146(28):18866-18872. doi: 10.1021/jacs.4c06246. Epub 2024 Jul 5.
4
Pd-Catalyzed Arylation of Secondary α-Alkoxytricyclohexylstannanes.
Org Lett. 2022 Dec 2;24(47):8714-8718. doi: 10.1021/acs.orglett.2c03729. Epub 2022 Nov 18.
6
Remote C-H Glycosylation by Ruthenium(II) Catalysis: Modular Assembly of meta-C-Aryl Glycosides.
Angew Chem Int Ed Engl. 2022 Oct 17;61(42):e202208620. doi: 10.1002/anie.202208620. Epub 2022 Sep 13.
7
P(v) intermediate-mediated E1cB elimination for the synthesis of glycals.
Chem Sci. 2022 Apr 22;13(19):5588-5596. doi: 10.1039/d2sc01423h. eCollection 2022 May 18.
9
Synthesis of C-Oligosaccharides through Versatile C(sp )-H Glycosylation of Glycosides.
Angew Chem Int Ed Engl. 2022 Mar 7;61(11):e202114993. doi: 10.1002/anie.202114993. Epub 2022 Jan 27.
10
Organometallic Ala Reagents for Umpolung Peptide Diversification.
Chem Catal. 2021 Sep 16;1(4):870-884. doi: 10.1016/j.checat.2021.05.016. Epub 2021 Jun 28.

本文引用的文献

1
A Convenient and General Method for Pd-Catalyzed Suzuki Cross-Couplings of Aryl Chlorides and Arylboronic Acids.
Angew Chem Int Ed Engl. 1998 Dec 31;37(24):3387-3388. doi: 10.1002/(SICI)1521-3773(19981231)37:24<3387::AID-ANIE3387>3.0.CO;2-P.
2
4
HF-Induced Intramolecular C-Arylation and C-Alkylation/Fluorination of 2-Aminoglycopyranoses.
Org Lett. 2017 Mar 3;19(5):1040-1043. doi: 10.1021/acs.orglett.7b00003. Epub 2017 Feb 13.
5
Organocatalyzed, Photoredox Heteroarylation of 2-Trifluoroboratochromanones via C-H Functionalization.
Org Lett. 2017 Feb 17;19(4):950-953. doi: 10.1021/acs.orglett.7b00196. Epub 2017 Feb 3.
6
C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential.
Chem Rev. 2017 Feb 8;117(3):1687-1764. doi: 10.1021/acs.chemrev.6b00475. Epub 2017 Jan 25.
7
Direct α-Arylation/Heteroarylation of 2-Trifluoroboratochromanones via Photoredox/Nickel Dual Catalysis.
Org Lett. 2017 Feb 3;19(3):436-439. doi: 10.1021/acs.orglett.6b03448. Epub 2017 Jan 12.
8
Dehydrative glycosylation with cyclic phosphonium anhydrides.
Org Biomol Chem. 2016 Dec 20;15(1):51-55. doi: 10.1039/c6ob01812b.
9
Highly Stereospecific Cross-Coupling Reactions of Anomeric Stannanes for the Synthesis of C-Aryl Glycosides.
J Am Chem Soc. 2016 Sep 21;138(37):12049-52. doi: 10.1021/jacs.6b07891. Epub 2016 Sep 13.
10
Total Synthesis of (+)-Vicenin-2.
Org Lett. 2016 Sep 16;18(18):4488-90. doi: 10.1021/acs.orglett.6b02203. Epub 2016 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验