Suppr超能文献

用于高性能锂离子电池的亚氧化硅基负极的批量合成及界面增强稳定性

Batch-Scale Synthesis and Interfacially Enhanced Stability of Silicon Suboxide-Based Anodes toward High-Performance Lithium-Ion Batteries.

作者信息

Sun Lin, Jiang Xiaowen, Liu Yang, Jin Zhong

机构信息

Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42343-42351. doi: 10.1021/acsami.4c10315. Epub 2024 Aug 3.

Abstract

SiO anode materials are among the most promising candidates for next-generation high-energy-density lithium-ion batteries (LIBs). However, their commercial application is hindered by poor conductivity, low initial Coulombic efficiency (ICE), and an unstable solid electrolyte interface. Developing cost-effective SiO anodes with high electrochemical performance is crucial for advanced LIBs. To tackle these issues, this study utilized APTES as a silicon source and carbon nanotubes (CNTs) as additives to prepare a T-SiO/C/CNTs composite material with N doping and in situ carbon coating using a "molecular assembly combined with controlled pyrolysis" strategy under mild conditions. The in situ carbon coating, formed by the pyrolysis of organic groups on the molecular precursor, effectively protects the inner SiO active material. The introduced CNTs enhance electron migration and improve the rigidity of the carbon coating layer. The prelithiated T-SiO@C/CNTs electrode achieves an ICE of 91.6%, with a specific capacity of 622 mAh g after 400 cycles at 1 A g and 475.8 mAh g after 800 cycles. Full cell tests with commercial NCM811 cathodes further demonstrate the potential of T-SiO@C/CNTs as a highly promising anode material. This work provides some insights into the rational design of advanced anode materials for LIBs, paving the way for their future development and application.

摘要

硅(SiO)负极材料是下一代高能量密度锂离子电池(LIBs)最有前景的候选材料之一。然而,其商业应用受到导电性差、初始库仑效率(ICE)低以及固体电解质界面不稳定的阻碍。开发具有高电化学性能且成本效益高的SiO负极对于先进的锂离子电池至关重要。为了解决这些问题,本研究利用3-氨丙基三乙氧基硅烷(APTES)作为硅源,碳纳米管(CNTs)作为添加剂,采用“分子组装与可控热解相结合”的策略,在温和条件下制备了具有氮掺杂和原位碳包覆的T-SiO/C/CNTs复合材料。由分子前驱体上的有机基团热解形成的原位碳包覆有效地保护了内部的SiO活性材料。引入的碳纳米管增强了电子迁移并提高了碳包覆层的刚性。预锂化的T-SiO@C/CNTs电极的初始库仑效率达到91.6%,在1 A g下循环400次后的比容量为622 mAh g,在800次循环后的比容量为475.8 mAh g。与商用NCM811正极进行的全电池测试进一步证明了T-SiO@C/CNTs作为一种极具前景的负极材料的潜力。这项工作为锂离子电池先进负极材料的合理设计提供了一些见解,为其未来的发展和应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验