Suppr超能文献

用于紫外全息显示的可打印自旋复用超表面

Printable Spin-Multiplexed Metasurfaces for Ultraviolet Holographic Displays.

作者信息

Kang Hyunjung, Kim Hongyoon, Kim Kyungtae, Rho Junsuk

机构信息

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

出版信息

ACS Nano. 2024 Aug 13;18(32):21504-21511. doi: 10.1021/acsnano.4c06280. Epub 2024 Aug 3.

Abstract

Multiplexed ultraviolet (UV) metaholograms, which are capable of displaying multiple holographic images from a single-layer device, are promising for enhancing tamper resistance and functioning as optical encryption devices. Despite considerable interest in optical security, the commercialization of UV metaholograms encounters obstacles, such as high-resolution patterning and material choices. Here, we realize spin-multiplexed UV metaholograms using a high-throughput printable platform that incorporates a zirconium dioxide (ZrO) particle-embedded resin (PER). Utilizing ZrO PER, which is transparent and exhibits a refractive index of approximately 1.8 at 320 nm, we fabricated a single device capable of encoding dual holographic information depending on polarization states is fabricated. We demonstrate UV metaholograms achieving efficiencies of 56.23% with left circularly polarized incident beams and 57.28% with right circularly polarized incident beams. These multiplexed UV metaholograms fabricated using a one-step platform enable real-world applications in anticounterfeiting and encryption.

摘要

复用紫外(UV)超全息图能够从单层器件显示多个全息图像,有望增强防伪性能并用作光学加密器件。尽管对光学安全有浓厚兴趣,但UV超全息图的商业化仍面临高分辨率图案化和材料选择等障碍。在此,我们利用一个包含二氧化锆(ZrO)颗粒嵌入树脂(PER)的高通量可打印平台实现了自旋复用UV超全息图。利用在320 nm处透明且折射率约为1.8的ZrO PER,我们制造了一个能够根据偏振态编码双全息信息的单一器件。我们展示了UV超全息图在左旋圆偏振入射光束下效率达到56.23%,在右旋圆偏振入射光束下效率达到57.28%。这些使用一步法平台制造的复用UV超全息图可实现防伪和加密等实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验