Interdisciplinary Science and Engineering Laboratory, Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA.
Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 056, Temuco 4780000, Chile; Laboratorio de Ecologia Microbiana Aplicada (EMALAB), Departamento de Ciencias Quimicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.
J Hazard Mater. 2024 Sep 15;477:135238. doi: 10.1016/j.jhazmat.2024.135238. Epub 2024 Jul 22.
Glyphosate is a globally dominant herbicide. Here, we studied the degradation and microbial response to glyphosate application in a wetland soil in central Delaware for controlling invasive species (Phragmites australis). We applied a two-step solid-phase extraction method using molecularly imprinted polymers designed for the separation and enrichment of glyphosate and aminomethylphosphonic acid (AMPA) from soils before their analysis by ultra-high-performance liquid chromatography (UHPLC) and Q Exactive Orbitrap mass spectrometry methods. Our results showed that approximately 90 % of glyphosate degraded over 100 d after application, with AMPA being a minor (<10 %) product. Analysis of glyphosate-specific microbial genes to identify microbial response and function revealed that the expression of the phnJ gene, which codes C-P lyase enzyme, was consistently dominant over the gox gene, which codes glyphosate oxidoreductase enzyme, after glyphosate application. Both gene and concentration data independently suggested that C-P bond cleavage-which forms sarcosine or glycine-was the dominant degradation pathway. This is significant because AMPA, a more toxic product, is reported to be the preferred pathway of glyphosate degradation in other soil and natural environments. The degradation through a safer pathway is encouraging for minimizing the detrimental impacts of glyphosate on the environment.
草甘膦是一种全球主导的除草剂。在这里,我们研究了在特拉华州中部的湿地土壤中应用草甘膦来控制入侵物种(芦苇)的降解和微生物响应。我们应用了两步固相萃取方法,使用为从土壤中分离和富集草甘膦和氨甲基膦酸(AMPA)而设计的分子印迹聚合物,然后通过超高效液相色谱(UHPLC)和 Q Exactive Orbitrap 质谱方法进行分析。我们的结果表明,施药后约 100 天内,草甘膦降解了约 90%,AMPA 是次要产物(<10%)。分析草甘膦特异性微生物基因以确定微生物响应和功能表明,编码 C-P 裂合酶的 phnJ 基因的表达在施药后一直高于编码草甘膦氧化还原酶的 gox 基因。基因和浓度数据均独立表明,形成肌氨酸或甘氨酸的 C-P 键断裂是主要的降解途径。这很重要,因为在其他土壤和自然环境中,报告称 AMPA 是草甘膦降解的首选途径,而 AMPA 是一种毒性更大的产物。通过更安全的途径进行降解有助于将草甘膦对环境的不利影响降到最低。