Suppr超能文献

使用共掺杂的MIL-101(Fe)纳米结构催化剂通过电催化还原低浓度硝酸盐增强氨合成

Enhancement of ammonia synthesis via electrocatalytic reduction of low-concentration nitrate using co-doped MIL-101(Fe) nanostructured catalysts.

作者信息

Wang Xueying, Wang Dong, Ma Hongchao, Wang Guowen

机构信息

School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China.

College of Marine Science-Technology and Environment, Dalian Ocean University, No. 52 Heishijiao, Shahekou District, Dalian 116023, PR China.

出版信息

J Colloid Interface Sci. 2025 Jan;677(Pt A):369-377. doi: 10.1016/j.jcis.2024.07.256. Epub 2024 Jul 31.

Abstract

In the domain of electrocatalytic NO reduction (NORR) for the treatment of low-concentration nitrate-containing domestic or industrial wastewater, the conversion of NO into NH holds significant promise for resource recovery. Nevertheless, the central challenge in this field revolves around the development of catalysts exhibiting both high catalytic activity and selectivity. To tackle this challenge, we design a two-step hydrothermal combine with carbonization process to fabricate a cobalt-doped Fe-based MOF (MIL-101) catalyst at 800 °C temperatures. The aim was to fully leverage cobalt's demonstrated high selectivity in NO electroreduction and enhance activity by promoting electron transfer through the d-band of Fe. The results indicate that the synthesized catalyst inherits multiple active sites from its precursor, with the co-doping process optimized through the topological properties of the MOF. Elemental analysis and oxidation state testing were employed to scrutinize the fundamental characteristics of this catalyst type and comprehend how these features may influence its efficiency. Electrochemical analysis revealed that, even under conditions of low NO concentration, the Co@MIL-Fe catalyst achieved an impressive nitrate conversion rate of 98 % at -0.9 V vs. RHE. NH selectivity was notably high at 87 %, and the by-product NO levels remained at a minimal threshold. The Faradaic efficiency for NH reached 74 %, with ammonia yield approaching 0.08 mmol h cm. This study furnishes indispensable research data for the design of Fe-based electrocatalysts for nitrate reduction, offering profound insights into the modulation of catalysts to play a pivotal role in the electroreduction of nitrate ions.

摘要

在用于处理低浓度含硝酸盐生活或工业废水的电催化NO还原(NORR)领域,将NO转化为NH₃在资源回收方面具有巨大潜力。然而,该领域的核心挑战在于开发兼具高催化活性和选择性的催化剂。为应对这一挑战,我们设计了两步水热结合碳化工艺,在800°C的温度下制备了一种钴掺杂的铁基金属有机框架(MIL-101)催化剂。目的是充分利用钴在NO电还原中已证明的高选择性,并通过促进电子通过铁的d带转移来提高活性。结果表明,合成的催化剂继承了其前驱体的多个活性位点,通过金属有机框架的拓扑性质优化了共掺杂过程。采用元素分析和氧化态测试来仔细研究这种催化剂类型的基本特性,并理解这些特性如何影响其效率。电化学分析表明,即使在低NO浓度条件下,Co@MIL-Fe催化剂在相对于可逆氢电极(RHE)为-0.9V时仍实现了高达98%的令人印象深刻的硝酸盐转化率。NH₃选择性高达87%,副产物NO水平保持在最低阈值。NH₃的法拉第效率达到74%,氨产率接近0.08 mmol h⁻¹ cm⁻²。本研究为设计用于硝酸盐还原的铁基电催化剂提供了不可或缺的研究数据,为调节催化剂以在硝酸根离子的电还原中发挥关键作用提供了深刻见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验