Suppr超能文献

处方性能自适应神经事件触发控制在欺骗攻击下切换非线性网络物理系统。

Prescribed performance adaptive neural event-triggered control for switched nonlinear cyber-physical systems under deception attacks.

机构信息

College of Control Science and Engineering, Bohai University, Jinzhou 121013, Liaoning, China.

College of Control Science and Engineering, Bohai University, Jinzhou 121013, Liaoning, China.

出版信息

Neural Netw. 2024 Nov;179:106586. doi: 10.1016/j.neunet.2024.106586. Epub 2024 Jul 27.

Abstract

In this paper, the design of an adaptive neural event-triggered control scheme for a class of switched nonlinear systems affected by external disturbances and deception attacks is presented. In order to address the effects caused by unknown disturbances, a switched nonlinear disturbance observer is used, and the error between the estimated signals and actual disturbances is small. Meanwhile, a prescribed performance function is introduced, which aims to ensure system output reaches the performance bounds within a predefined finite time. In addition, a dynamic event-triggered mechanism is designed to reduce the communication load. Based on the theoretical analysis, all signals within the closed-loop system are bounded, while simultaneously ensuring the complete elimination of Zeno behavior. Finally, the validity and efficacy of the scheme are proven by an example of numerical simulation.

摘要

本文针对一类受外部干扰和欺骗攻击影响的切换非线性系统,设计了一种自适应神经网络事件触发控制方案。为了解决未知干扰引起的问题,采用了切换非线性干扰观测器,观测器估计信号与实际干扰之间的误差较小。同时,引入了一个规定性能函数,旨在确保系统输出在预设的有限时间内达到性能边界。此外,设计了一个动态事件触发机制,以降低通信负载。基于理论分析,闭环系统内的所有信号都是有界的,同时确保完全消除 Zeno 行为。最后,通过数值仿真示例验证了该方案的有效性和功效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验