Suppr超能文献

便携式近红外技术的开发与评估及其在澳大利亚非法药物的识别和定量分析中的应用。

Development and evaluation of portable NIR technology for the identification and quantification of Australian illicit drugs.

机构信息

Centre for Forensic Science, University of Technology Sydney, 15 Broadway, PO Box 123, Broadway, NSW 2007, Australia.

École des Sciences Criminelles/School of Criminal Justice, University of Lausanne, Building Batochime, Lausanne, Vaud CH-1015, Switzerland.

出版信息

Forensic Sci Int. 2024 Sep;362:112179. doi: 10.1016/j.forsciint.2024.112179. Epub 2024 Jul 31.

Abstract

The efficient and accurate analysis of illicit drugs remains a constant challenge in Australia given the high volume of drugs trafficked into and around the country. Portable drug testing technologies facilitate the decentralisation of the forensic laboratory and enable analytical data to be acted upon more efficiently. Near-infrared (NIR) spectroscopy combined with chemometric modelling (machine learning algorithms) has been highlighted as a portable drug testing technology that is rapid and accurate. However, its effectiveness depends upon a database of chemically relevant specimens that are representative of the market. There are chemical differences between drugs in different countries that need to be incorporated into the database to ensure accurate chemometric model prediction. This study aimed to optimise and assess the implementation of NIR spectroscopy combined with machine learning models to rapidly identify and quantify illicit drugs within an Australian context. The MicroNIR (Viavi Solutions Inc.) was used to scan 608 illicit drug specimens seized by the Australian Federal Police comprising of mainly crystalline methamphetamine hydrochloride (HCl), cocaine HCl, and heroin HCl. A number of other traditional drugs, new psychoactive substances and adulterants were also scanned to assess selectivity. The 3673 NIR scans were compared to the identity and quantification values obtained from a reference laboratory in order to assess the proficiency of the chemometric models. The identification of crystalline methamphetamine HCl, cocaine HCl, and heroin HCl specimens was highly accurate, with accuracy rates of 98.4 %, 97.5 %, and 99.2 %, respectively. The sensitivity of these three drugs was more varied with heroin HCl identification being the least sensitive (methamphetamine = 96.6 %, cocaine = 93.5 % and heroin = 91.3 %). For these three drugs, the NIR technology provided accurate quantification, with 99 % of values falling within the relative uncertainty of ±15 %. The MicroNIR with NIRLAB infrastructure has demonstrated to provide accurate results in real-time with clear operational applications. There is potential to improve informed decision-making, safety, efficiency and effectiveness of frontline and proactive policing within Australia.

摘要

在澳大利亚,由于大量毒品走私进入国内及周边地区,有效且准确地分析非法药物仍然是一个持续存在的挑战。便携式毒品检测技术促进了法医实验室的去中心化,并使分析数据能够更有效地发挥作用。近红外(NIR)光谱结合化学计量建模(机器学习算法)已被突出为一种快速且准确的便携式毒品检测技术。然而,其有效性取决于代表市场的具有化学相关性的样本数据库。不同国家的药物存在化学差异,需要将其纳入数据库以确保化学计量模型预测的准确性。本研究旨在优化并评估近红外光谱结合机器学习模型在澳大利亚背景下快速识别和定量非法药物的实施情况。使用 MicroNIR(Viavi Solutions Inc.)扫描了 608 份澳大利亚联邦警察缴获的非法药物样本,主要由结晶盐酸甲基苯丙胺(HCl)、可卡因 HCl 和海洛因 HCl 组成。还扫描了一些其他传统药物、新型精神活性物质和掺杂物,以评估选择性。将 3673 次 NIR 扫描与从参考实验室获得的身份和定量值进行比较,以评估化学计量模型的熟练程度。结晶盐酸甲基苯丙胺、可卡因 HCl 和海洛因 HCl 样本的识别非常准确,准确率分别为 98.4%、97.5%和 99.2%。这三种药物的敏感性差异较大,其中海洛因 HCl 的识别敏感性最低(甲基苯丙胺=96.6%、可卡因=93.5%和海洛因=91.3%)。对于这三种药物,NIR 技术提供了准确的定量结果,99%的值落在相对不确定度±15%以内。配备 NIRLAB 基础设施的 MicroNIR 已证明能够实时提供准确的结果,并具有明确的操作应用潜力。这有可能改善澳大利亚的前线和主动警务的决策、安全性、效率和效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验