Suppr超能文献

序贯窗口采集所有理论质谱 (SWATH-MS) 作为一种新兴的蛋白质组学方法,用于发现黑暗切割牛肉的生物标志物。

Sequential window acquisition of all theoretical mass spectra (SWATH-MS) as an emerging proteomics approach for the discovery of dark-cutting beef biomarkers.

机构信息

Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Asturias, Spain.

Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.

出版信息

Meat Sci. 2024 Nov;217:109618. doi: 10.1016/j.meatsci.2024.109618. Epub 2024 Jul 31.

Abstract

Recent advances in "omics" technologies have enabled the identification of new beef quality biomarkers and have also allowed for the early detection of quality defects such as dark-cutting beef, also known as DFD (dark, firm, and dry) beef. However, most of the studies conducted were carried out on a small number of animals and mostly applied gel-based proteomics. The present study proposes for the first time a Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) proteomics approach to characterize and comprehensively quantify the post-mortem muscle proteome of DFD (pH ≥ 6.2) and CONTROL (5.4 ≤ pH ≤ 5.6) beef samples within the largest database of DFD/CONTROL beef samples to date (26 pairs of the Longissimus thoracis muscle samples of young bulls from Asturiana de los Valles breed, n = 52). The pairwise comparison yielded 35 proteins that significantly differed in their abundances between the DFD and CONTROL samples. Chemometrics methods using both PLS-DA and OPLS-DA revealed 31 and 36 proteins with VIP > 2.0, respectively. The combination of different statistical methods these being Volcano plot, PLS-DA and OPLS-DA allowed us to propose 16 proteins as good candidate biomarkers of DFD beef. These proteins are associated with interconnected biochemical pathways related to energy metabolism (DHRS7B and CYB5R3), binding and signaling (RABGGTA, MIA3, BPIFA2B, CAP2, APOBEC2, UBE2V1, KIR2DL1), muscle contraction, structure and associated proteins (DMD, PFN2), proteolysis, hydrolases, and activity regulation (AGT, C4A, GLB1, CAND2), and calcium homeostasis (ANXA6). These results evidenced the potential of SWATH-MS and chemometrics to accurately identify novel biomarkers for meat quality defects, providing a deeper understanding of the molecular mechanisms underlying dark-cutting beef condition.

摘要

近年来,“组学”技术的进步使人们能够鉴定新的牛肉质量生物标志物,并能够早期检测到质量缺陷,如暗切割牛肉,也称为 DFD(暗、硬、干)牛肉。然而,大多数已进行的研究都是在少数动物身上进行的,并且主要应用凝胶基蛋白质组学。本研究首次提出了一种顺序窗口采集所有理论质谱(SWATH-MS)蛋白质组学方法,用于对 DFD(pH≥6.2)和 CONTROL(5.4≤pH≤5.6)牛肉样品的死后肌肉蛋白质组进行特征描述和全面定量,这是迄今为止 DFD/CONTROL 牛肉样品最大数据库中的首次研究(来自 Asturiana de los Valles 品种的 26 对年轻公牛的胸最长肌样品,n=52)。成对比较得出 35 种蛋白质,它们在 DFD 和 CONTROL 样品中的丰度存在显著差异。使用 PLS-DA 和 OPLS-DA 的化学计量学方法分别揭示了 31 种和 36 种 VIP>2.0 的蛋白质。不同统计方法的组合,即火山图、PLS-DA 和 OPLS-DA,使我们能够提出 16 种蛋白质作为 DFD 牛肉的良好候选生物标志物。这些蛋白质与能量代谢(DHRS7B 和 CYB5R3)、结合和信号(RABGGTA、MIA3、BPIFA2B、CAP2、APOBEC2、UBE2V1、KIR2DL1)、肌肉收缩、结构和相关蛋白(DMD、PFN2)、蛋白水解、水解酶和活性调节(AGT、C4A、GLB1、CAND2)以及钙稳态(ANXA6)相关的生化途径有关。这些结果证明了 SWATH-MS 和化学计量学准确识别肉类质量缺陷新生物标志物的潜力,为深入了解暗切割牛肉条件的分子机制提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验