Suppr超能文献

通过修正的反向拓扑指数预测心血管药物物理化学性质的数学建模。

Mathematical modeling for prediction of physicochemical characteristics of cardiovascular drugs via modified reverse degree topological indices.

机构信息

Department of Mathematics, Loyola College, Chennai, 600034, India.

School of Advanced Sciences, Vellore Institute of Technology, Chennai, 600127, India.

出版信息

Eur Phys J E Soft Matter. 2024 Aug 4;47(8):53. doi: 10.1140/epje/s10189-024-00446-3.

Abstract

Global health concerns persist due to the multifaceted nature of heart diseases, which include lifestyle choices, genetic predispositions, and emerging post-COVID complications like myocarditis and pericarditis. This broadens the spectrum of cardiovascular ailments to encompass conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. Timely interventions, including lifestyle modifications and regular medications such as antiplatelets, beta-blockers, angiotensin-converting enzyme inhibitors, antiarrhythmics, and vasodilators, are pivotal in managing these conditions. In drug development, topological indices play a critical role, offering cost-effective computational and predictive tools. This study explores modified reverse degree topological indices, highlighting their adjustable parameters that actively shape the degree sequences of molecular drugs. This feature makes the approach suitable for datasets with unique physicochemical properties, distinguishing it from traditional methods that rely on fixed degree approaches. In our investigation, we examine a dataset of 30 drug compounds, including sotagliflozin, dapagliflozin, dobutamine, etc., which are used in the treatment of cardiovascular diseases. Through the structural analysis, we utilize modified reverse degree indices to develop quantitative structure-property relationship (QSPR) models, aiming to unveil essential understandings of their characteristics for drug development. Furthermore, we compare our QSPR models against the degree-based models, clearly demonstrating the superior effectiveness inherent in our proposed method.

摘要

由于心脏病的多方面性质,包括生活方式选择、遗传易感性以及新兴的 COVID 后并发症,如心肌炎和心包炎,全球健康问题仍然存在。这拓宽了心血管疾病的范围,包括冠状动脉疾病、心力衰竭、心律失常和瓣膜疾病等病症。及时的干预措施,包括生活方式的改变和定期服用抗血小板药物、β受体阻滞剂、血管紧张素转换酶抑制剂、抗心律失常药和血管扩张剂等药物,对于这些疾病的治疗至关重要。在药物开发中,拓扑指数发挥着关键作用,提供了具有成本效益的计算和预测工具。本研究探讨了改进的逆度拓扑指数,强调了其可调参数,这些参数积极塑造了分子药物的度序列。这一特性使得该方法适用于具有独特物理化学性质的数据集,与传统的依赖固定度方法的方法区分开来。在我们的研究中,我们研究了一组 30 种药物化合物的数据集,包括 sotagliflozin、dapagliflozin、多巴酚丁胺等,这些药物用于治疗心血管疾病。通过结构分析,我们利用改进的逆度指数来开发定量构效关系(QSPR)模型,旨在揭示它们的特征对于药物开发的重要理解。此外,我们将我们的 QSPR 模型与基于度的模型进行比较,清楚地证明了我们提出的方法固有的优越效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验