Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, M5S 3B1, Canada.
Department of Civil Engineering, Queen's University, 58 University Ave, Kingston, Ontario, K7L 3N9, Canada.
Water Res. 2024 Oct 1;263:122149. doi: 10.1016/j.watres.2024.122149. Epub 2024 Jul 25.
Sulfidated nanoscale zerovalent iron (S-nZVI) has demonstrated promising reactivity and longevity for remediating chlorinated volatile compounds (cVOC) contaminants in laboratory tests. However, its effectiveness in field applications remains inadequately evaluated. This study provides the first quantitative evaluation of the long-term effectiveness of carboxymethyl cellulose-stabilized S-nZVI (CMC-S-nZVI) at a cVOC-contaminated field site. A reactive transport model-based numerical approach delineates the change in cVOC concentrations and carbon isotope values (i.e., δC from compound-specific stable isotope analysis (CSIA)) caused by dissolution of dense non-aqueous phase liquid, sorption, and pathway-specific degradation and production, respectively. This delineation reveals quantitative insights into remediation effectiveness typically difficult to obtain, including extent of degradation, contributions of different degradation pathways, and degradation rate coefficients. Significantly, even a year after CMC-S-nZVI application, degradation remains an important process effectively removing various cVOC contaminants (i.e., chlorinated ethenes, 1,2-dichloroethanes, and chlorinated methanes) at an extent varying from 5 %-62 %. Although the impacts of CMC-S-nZVI abundance on degradation vary for different cVOC and for different sampling locations at the site, for the primary site contaminants of tetrachloroethene and trichloroethene, their predominance of dichloroelimination pathway (≥ 88 %), high degradation rate coefficient (0.4-1.7 d), and occurrence at locations with relatively high CMC-S-nZVI abundance strongly indicate the effectiveness of abiotic remediation. These quantitative assessments support that CMC-S-nZVI supports sustainable ZVI-based remediation. Further, the novel numerical approach presented in this study provides a powerful tool for quantitative cVOC remediation assessments at complex field sites where multiple processes co-occur to control both concentration and CSIA data.
硫化纳米零价铁(S-nZVI)在实验室测试中表现出了对修复含氯挥发性化合物(cVOC)污染物的良好反应性和持久性。然而,其在现场应用中的效果仍未得到充分评估。本研究首次对羧甲基纤维素稳定的 S-nZVI(CMC-S-nZVI)在 cVOC 污染现场的长期有效性进行了定量评估。基于反应传输模型的数值方法,分别描绘了由于致密非水相液体的溶解、吸附以及特定途径的降解和生成而导致的 cVOC 浓度和碳同位素值(即来自化合物特异性稳定同位素分析(CSIA)的δC)的变化。这种描绘揭示了对修复效果的定量见解,这些见解通常难以获得,包括降解的程度、不同降解途径的贡献以及降解速率系数。重要的是,即使在 CMC-S-nZVI 应用一年后,降解仍然是一个重要的过程,有效地去除了各种 cVOC 污染物(即氯代乙烯、1,2-二氯乙烷和氯代甲烷),降解程度从 5%到 62%不等。尽管 CMC-S-nZVI 丰度对不同的 cVOC 和现场不同采样位置的降解的影响不同,但对于主要的 site 污染物四氯乙烯和三氯乙烯,它们以二氯消除途径为主(≥88%),降解速率系数高(0.4-1.7 d),并且出现在 CMC-S-nZVI 丰度相对较高的位置,这强烈表明了非生物修复的有效性。这些定量评估支持 CMC-S-nZVI 支持可持续的基于 ZVI 的修复。此外,本研究提出的新的数值方法为在复杂的现场场地中进行定量 cVOC 修复评估提供了一个强大的工具,在这些场地中,多种过程同时发生,以控制浓度和 CSIA 数据。