Cui Kun, Wang Honglei, Ke Yue, Dong Xiaobo, Yang Yang, Wu Zihao, Liu Sihan, Wang Zihan, Lin Wen, Zhao Tianliang
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; Fujian Key Laboratory of Severe Weather and Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou 350001, China.
Sci Total Environ. 2024 Nov 1;949:175248. doi: 10.1016/j.scitotenv.2024.175248. Epub 2024 Aug 3.
Aerosol-cloud interactions play a vital role in climate change. This study leverages observations from the King-350 aircraft over the North China Plain on November 29, 2019, to examine aerosol and cloud microphysical characteristics of mixed-phase clouds. Through detailed vertical and spectral distributions, we investigate aerosol, cloud droplet, and ice crystal distributions in seeded clouds (SC) and natural precipitating clouds (NPC) within the same cloud system. From the vertical profile, SC and NPC have similar vertical distributions of aerosol and cloud droplets, with over 95 % of aerosols concentrated below 1600 m near the ground. Cloud droplets are more evenly distributed within the two clouds, cloud droplet number concentrations (N) in SC were three orders of magnitude higher than in NPC. Ice water content (IWC) and ice crystal number concentration (N) show distinct layer preferences-accumulating predominantly in SC's top layer and NPC's middle layer. From spectral distribution, a smaller proportion of cloud droplets (40-50 μm in diameter, the same hereafter) in SC compared to NPC. Rimed ice crystals and globular graupel (1325-1550 μm in diameter) were in SC, while plate and irregular ice crystals (300-450 μm) were in NPC with an order of magnitude higher than in SC. These microphysical differences highlight the complexity of cloud seeding efficacy, which varies based on cloud conditions and microphysical properties. In the first seeding, Ni increased by 1-2 orders of magnitude (125-300 μm) in the high Nc (N > 1.11 × 10 L) region. Seeding in low N (N < 1.11 × 10 L) regions was hard to be effective, especially in low N and low liquid water content (LWC) (LWC < 0.122 g/m) regions. In the second seeding, ice crystals (125-250 μm) produced by the first seeding enhance the seeding efficiency. The responded regions were more sensitive to subsequent seeding, resulting in stronger reactions or longer duration.
气溶胶 - 云相互作用在气候变化中起着至关重要的作用。本研究利用2019年11月29日在华北平原上空的King - 350飞机的观测数据,研究混合相云的气溶胶和云微物理特征。通过详细的垂直和光谱分布,我们研究了同一云系中播云(SC)和自然降水云(NPC)中的气溶胶、云滴和冰晶分布。从垂直剖面来看,SC和NPC的气溶胶和云滴垂直分布相似,超过95%的气溶胶集中在地面附近1600米以下。云滴在这两种云中分布更均匀,SC中的云滴数浓度(N)比NPC高三个数量级。冰水含量(IWC)和冰晶数浓度(N)表现出明显的层偏好——主要集中在SC的顶层和NPC的中层。从光谱分布来看,与NPC相比,SC中直径较小的云滴(直径40 - 50微米,以下同)比例较小。SC中有覆冰冰晶和球状霰(直径1325 - 1550微米),而NPC中有片状和不规则冰晶(直径300 - 450微米),其数量级比SC中的高。这些微物理差异凸显了云播撒效果的复杂性,并随云况和微物理性质而变化。在第一次播撒中,在高Nc(N > 1.11×10⁶/L)区域,直径为125 - 300微米的Ni增加了1 - 2个数量级。在低N(N < 1.11×10⁶/L)区域播撒很难有效,尤其是在低N和低液态水含量(LWC)(LWC < 0.122克/立方米)区域。在第二次播撒中,第一次播撒产生的冰晶(直径125 - 250微米)提高了播撒效率。响应区域对后续播撒更敏感,导致反应更强或持续时间更长。