Suppr超能文献

当忽略室内空气质量时,评估个人暴露估计中的偏差:GPS 功能的移动空气传感器数据与固定室外传感器数据的比较。

Assessing bias in personal exposure estimates when indoor air quality is ignored: A comparison between GPS-enabled mobile air sensor data and stationary outdoor sensor data.

机构信息

Department of Geography, Planning, and Environment, East Carolina University, 1000 E. 5th St., Greenville, NC 27858, USA.

Department of Geography, Sustainability, Community, and Urban Studies, University of Connecticut, 215 Glenbrook Rd., Storrs, CT 06269, USA.

出版信息

Sci Total Environ. 2024 Nov 10;950:175249. doi: 10.1016/j.scitotenv.2024.175249. Epub 2024 Aug 3.

Abstract

Neglecting indoor air quality in exposure assessments may lead to biased exposure estimates and erroneous conclusions about the health impacts of exposure and environmental health disparities. This study assessed these biases by comparing two types of personal exposure estimates for 100 individuals: one derived from real-time particulate matter (PM) measurements collected both indoors and outdoors using a low-cost portable air monitor (GeoAir2.0) and the other from PurpleAir sensor network data collected exclusively outdoors. The PurpleAir measurement data were used to create smooth air pollution surfaces using geostatistical methods. To obtain mobility-based exposure estimates, both sets of air pollution data were combined with the individuals' GPS tracking data. Paired-sample t-tests were then performed to examine the differences between these two estimates. This study also investigated whether GeoAir2.0- and PurpleAir-based estimates yielded consistent conclusions about gender and economic disparities in exposure by performing Welch's t-tests and ANOVAs and comparing their t-values and F-values. The study revealed significant discrepancies between GeoAir2.0- and PurpleAir-based estimates, with PurpleAir data consistently overestimating exposure (t = 5.94; p < 0.001). It also found that females displayed a higher average exposure than males (15.65 versus. 8.55 μg/m) according to GeoAir2.0 data (t = 4.654; p = 0.055), potentially due to greater time spent indoors engaging in pollution-generating activities traditionally associated with females, such as cooking. This contrasted with the PurpleAir data, which indicated higher exposure for males (43.78 versus. 46.26 μg/m) (t = 3.793; p = 0.821). Additionally, GeoAir2.0 data revealed significant economic disparities (F = 7.512; p < 0.002), with lower-income groups experiencing higher exposure-a disparity not captured by PurpleAir data (F = 0.756; p < 0.474). These findings highlight the importance of considering both indoor and outdoor air quality to reduce bias in exposure estimates and more accurately represent environmental disparities.

摘要

在暴露评估中忽视室内空气质量可能会导致暴露估计值存在偏差,并对暴露对健康的影响以及环境健康差异得出错误的结论。本研究通过比较两种类型的 100 个人的个人暴露估计值来评估这些偏差:一种是使用低成本便携式空气监测器(GeoAir2.0)实时收集的室内和室外颗粒物(PM)测量值,另一种是仅从 PurpleAir 传感器网络数据中收集的室外数据。使用地质统计学方法创建平滑的空气污染表面来获得 PurpleAir 测量数据。为了获得基于移动性的暴露估计值,将两组空气污染数据与个人的 GPS 跟踪数据结合起来。然后进行配对样本 t 检验以检查这两种估计值之间的差异。本研究还通过执行 Welch 的 t 检验和 ANOVA 并比较其 t 值和 F 值,研究了 GeoAir2.0 和 PurpleAir 估计值是否对性别和经济差异导致的暴露产生一致的结论。研究表明,GeoAir2.0 和 PurpleAir 之间的估计值存在显著差异,PurpleAir 数据始终高估了暴露量(t=5.94;p<0.001)。它还发现,根据 GeoAir2.0 数据,女性的平均暴露量高于男性(15.65 微克/立方米与 8.55 微克/立方米)(t=4.654;p=0.055),这可能是由于女性在室内从事传统上与女性相关的产生污染的活动(如烹饪)的时间更多。这与 PurpleAir 数据形成对比,后者表明男性的暴露量更高(43.78 微克/立方米与 46.26 微克/立方米)(t=3.793;p=0.821)。此外,GeoAir2.0 数据显示出显著的经济差异(F=7.512;p<0.002),低收入群体的暴露量更高-这是 PurpleAir 数据无法捕捉到的差异(F=0.756;p<0.474)。这些发现强调了考虑室内和室外空气质量以减少暴露估计值中的偏差并更准确地代表环境差异的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验