A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
A. B. Hancock, Jr., Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
J Lipid Res. 2024 Sep;65(9):100615. doi: 10.1016/j.jlr.2024.100615. Epub 2024 Aug 5.
Cyclooxygenase-2 converts arachidonic acid to prostaglandins (PGs) and the endocannabinoid, 2-arachidonoylglycerol (2-AG), to PG glyceryl esters (PG-Gs). The physiological function of PG biosynthesis has been extensively studied, but the importance of the more recently discovered PG-G synthetic pathway remains incompletely defined. This disparity is due in part to a lack of knowledge of the physiological conditions under which PG-G biosynthesis occurs. We have discovered that RAW264.7 macrophages stimulated with Kdo2-lipid A (KLA) produce primarily PGs within the first 12 h followed by robust PG-G synthesis between 12 h and 24 h. We suggest that the amount of PG-Gs quantified is less than actually synthesized, because PG-Gs are subject to a significant level of hydrolysis during the time course of synthesis. Inhibition of cytosolic phospholipase A2 by giripladib does not accelerate PG-G synthesis, suggesting the differential time course of PG and PG-G synthesis is not due to the competition between arachidonic acid and 2-AG. The late-phase PG-G formation is accompanied by an increase in the level of 2-AG and a concomitant decrease in 18:0-20:4 diacylglycerol (DAG). Inhibition of DAG lipases by KT-172 decreases the levels of 2-AG and PG-Gs, indicating that the DAG-lipase pathway is involved in delayed 2-AG metabolism/PG-G synthesis. These results demonstrate that physiologically significant levels of PG-Gs are produced by activated RAW264.7 macrophages well after the production of PGs plateaus.
环氧化酶-2 将花生四烯酸转化为前列腺素(PGs)和内源性大麻素,2-花生四烯酰甘油(2-AG),转化为 PG 甘油酯(PG-Gs)。PG 生物合成的生理功能已得到广泛研究,但最近发现的 PG-G 合成途径的重要性仍未完全定义。这种差异部分归因于缺乏对 PG-G 生物合成发生的生理条件的了解。我们发现,用 Kdo2-脂多糖(KLA)刺激 RAW264.7 巨噬细胞在最初的 12 小时内主要产生 PGs,然后在 12 小时到 24 小时之间产生大量的 PG-G 合成。我们认为,定量的 PG-G 量少于实际合成的量,因为 PG-G 在合成过程中的时间进程中会受到相当大的水解水平的影响。细胞溶质磷脂酶 A2 的抑制剂 giripladib 不会加速 PG-G 的合成,这表明 PG 和 PG-G 合成的不同时间进程不是由于花生四烯酸和 2-AG 之间的竞争。后期 PG-G 的形成伴随着 2-AG 水平的增加和 18:0-20:4 二酰基甘油(DAG)的同时减少。DAG 脂肪酶的抑制剂 KT-172 降低了 2-AG 和 PG-Gs 的水平,表明 DAG 脂肪酶途径参与了延迟的 2-AG 代谢/PG-G 合成。这些结果表明,生理上有意义的 PG-Gs 水平是由激活的 RAW264.7 巨噬细胞产生的,远在 PG 水平达到平台期之后。