Suppr超能文献

具有CO促进可回收性的共价适应性聚合物网络。

Covalent adaptable polymer networks with CO-facilitated recyclability.

作者信息

Chen Jiayao, Li Lin, Luo Jiancheng, Meng Lingyao, Zhao Xiao, Song Shenghan, Demchuk Zoriana, Li Pei, He Yi, Sokolov Alexei P, Cao Peng-Fei

机构信息

State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.

出版信息

Nat Commun. 2024 Aug 4;15(1):6605. doi: 10.1038/s41467-024-50738-7.

Abstract

Cross-linked polymers with covalent adaptable networks (CANs) can be reprocessed under external stimuli owing to the exchangeability of dynamic covalent bonds. Optimization of reprocessing conditions is critical since increasing the reprocessing temperature costs more energy and even deteriorates the materials, while reducing the reprocessing temperature via molecular design usually narrows the service temperature range. Exploiting CO gas as an external trigger for lowering the reprocessing barrier shows great promise in low sample contamination and environmental friendliness. Herein, we develop a type of CANs incorporated with ionic clusters that achieve CO-facilitated recyclability without sacrificing performance. The presence of CO can facilitate the rearrangement of ionic clusters, thus promoting the exchange of dynamic bonds. The effective stress relaxation and network rearrangement enable the system with rapid recycling under CO while retaining excellent mechanical performance in working conditions. This work opens avenues to design recyclable polymer materials with tunable dynamics and responsive recyclability.

摘要

具有共价自适应网络(CANs)的交联聚合物由于动态共价键的可交换性,可以在外部刺激下进行再加工。优化再加工条件至关重要,因为提高再加工温度会消耗更多能量,甚至会使材料性能恶化,而通过分子设计降低再加工温度通常会缩小使用温度范围。利用CO气体作为降低再加工障碍的外部触发因素,在低样品污染和环境友好性方面显示出巨大潜力。在此,我们开发了一种包含离子簇的CANs,其在不牺牲性能的情况下实现了CO促进的可回收性。CO的存在可以促进离子簇的重排,从而促进动态键的交换。有效的应力松弛和网络重排使系统在CO作用下能够快速回收,同时在工作条件下保持优异的机械性能。这项工作为设计具有可调动力学和响应性可回收性的可回收聚合物材料开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1e/11298553/7c695af04dc0/41467_2024_50738_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验