Eskandarisani Mohammadmahdi, Aliverdinia Mahdi, Malakshah Vahid Mollania, Mirhosseini Shaghayegh, Zand Mahdi Moghimi
School of Mechanical Engineering, University of Tehran, Tehran, Iran.
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
J Med Signals Sens. 2024 Jul 2;14:14. doi: 10.4103/jmss.jmss_24_23. eCollection 2024.
Devices that mimic the functions of human skin are known as "electronic skin," and they must have characteristics like high sensitivity, a wide dynamic range, high spatial homogeneity, cheap cost, wide area easy processing, and the ability to distinguish between diverse external inputs.
This study introduces a novel approach, termed microfluidic droplet-based emulsion self-assembly (DMESA), for fabricating 3D microstructured elastomer layers using polydimethylsiloxane (PDMS). The method aims to produce accurate capacitive pressure sensors suitable for electronic skin (e-skin) applications. The DMESA method facilitates the creation of uniform-sized spherical micropores dispersed across a significant area without requiring a template, ensuring excellent spatial homogeneity.
Micropore size adjustment, ranging from 100 to 600 μm, allows for customization of pressure sensor sensitivity. The active layer of the capacitive pressure sensor is formed by the three-dimensional elastomer itself. Experimental results demonstrate the outstanding performance of the DMESA approach. It offers simplicity in processing, the ability to adjust performance parameters, excellent spatial homogeneity, and the capability to differentiate varied inputs. Capacitive pressure sensors fabricated using this method exhibit high sensitivity and dynamic amplitude, making them promising candidates for various e-skin applications.
The DMESA method presents a highly promising solution for fabricating 3D microstructured elastomer layers for capacitive pressure sensors in e-skin technology. Its simplicity, performance adjustability, spatial homogeneity, and sensitivity to different inputs make it suitable for a wide range of electronic skin applications.
模仿人类皮肤功能的设备被称为“电子皮肤”,它们必须具备高灵敏度、宽动态范围、高空间均匀性、低成本、大面积易加工以及能够区分不同外部输入等特性。
本研究引入了一种名为基于微流体液滴的乳液自组装(DMESA)的新方法,用于使用聚二甲基硅氧烷(PDMS)制造三维微结构弹性体层。该方法旨在生产适用于电子皮肤(e-skin)应用的精确电容式压力传感器。DMESA方法有助于在无需模板的情况下创建均匀尺寸的球形微孔,这些微孔分散在大面积区域,确保了出色的空间均匀性。
微孔尺寸可在100至600μm范围内调节,从而能够定制压力传感器的灵敏度。电容式压力传感器的有源层由三维弹性体本身形成。实验结果证明了DMESA方法的卓越性能。它具有加工简单、能够调整性能参数、出色的空间均匀性以及区分不同输入的能力。使用该方法制造的电容式压力传感器具有高灵敏度和动态幅度,使其成为各种电子皮肤应用的有前途的候选者。
DMESA方法为在电子皮肤技术中制造用于电容式压力传感器的三维微结构弹性体层提供了一个非常有前途的解决方案。其简单性、性能可调节性、空间均匀性以及对不同输入的敏感性使其适用于广泛的电子皮肤应用。