Suppr超能文献

金属-配体相互作用对二维 Kagome 结构的全硫代并五苯(PTC)金属有机框架(MOF)磁特性的影响。

Effect of metal-ligand interactions on magnetic characteristics of two-dimensional Kagome structured perthiolated coronene (PTC) metal-organic frameworks (MOFs).

作者信息

Fu Zijie, Zhang Yunfei, Jia Minghao, Zhang Shuo, Guan Lixiu, Xing Dan, Tao Junguang

机构信息

Arizona College of Technology at Hebei University of Technology, Tianjin 300401, China.

School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China.

出版信息

Phys Chem Chem Phys. 2024 Aug 14;26(32):21767-21776. doi: 10.1039/d4cp02030h.

Abstract

In recent years, the potential applications of two-dimensional (2D) metal-organic framework (MOF) materials in fields like spintronics have drawn increasing attention. Inspired by the successful synthesis of a perthiolated coronene (PTC)-Fe MOF structure, this study explores the fine-tuning of its electronic and magnetic structure by substituting Fe elements with various transition metals. Our calculations demonstrate a substantial increase in the Curie temperature () by a factor of 5 for Co and 10 for Mn when replacing Fe. This enhancement is attributed to the elevated electron density near the Fermi level, facilitating the generation of additional itinerant electrons crucial for the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange mechanism. However, substituting Fe with V, Cr, Ni, and Cu leads to a loss of ferromagnetic ground state. Our work enhances the understanding of the electronic and magnetic behavior of the 2D PTC-TM (transition metal) MOF family, and provides a promising avenue for engineering 2D magnetic MOF systems.

摘要

近年来,二维(2D)金属有机框架(MOF)材料在自旋电子学等领域的潜在应用受到了越来越多的关注。受全硫代并四苯(PTC)-铁MOF结构成功合成的启发,本研究通过用各种过渡金属替代铁元素来探索其电子和磁结构的微调。我们的计算表明,当用钴替代铁时,居里温度()大幅提高了5倍,用锰替代铁时提高了10倍。这种增强归因于费米能级附近电子密度的升高,有利于产生对鲁德曼-基特尔-卡苏亚-约西达(RKKY)交换机制至关重要的额外巡游电子。然而,用钒、铬、镍和铜替代铁会导致铁磁基态的丧失。我们的工作加深了对二维PTC-TM(过渡金属)MOF家族电子和磁行为的理解,并为设计二维磁性MOF系统提供了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验