Dwivedi Anurag, Lopez-Ruiz Miguel Angel, Iyengar Srinivasan S
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States.
J Phys Chem A. 2024 Aug 15;128(32):6774-6797. doi: 10.1021/acs.jpca.4c03407. Epub 2024 Aug 5.
The exponential scaling of the quantum degrees of freedom with the size of the system is one of the biggest challenges in computational chemistry and particularly in quantum dynamics. We present a tensor network approach for the time-evolution of the nuclear degrees of freedom of multiconfigurational chemical systems at a reduced storage and computational complexity. We also present quantum algorithms for the resultant dynamics. To preserve the compression advantage achieved via tensor network decompositions, we present an adaptive algorithm for the regularization of nonphysical bond dimensions, preventing the potentially exponential growth of these with time. While applicable to any quantum dynamical problem, our method is particularly valuable for dynamical simulations of nuclear chemical systems. Our algorithm is demonstrated using ab initio potentials obtained for a symmetric hydrogen-bonded system, namely, the protonated 2,2'-bipyridine, and compared to exact diagonalization numerical results.
量子自由度随系统规模呈指数级增长,这是计算化学尤其是量子动力学领域面临的最大挑战之一。我们提出了一种张量网络方法,用于多构型化学系统核自由度的时间演化,具有降低的存储和计算复杂度。我们还提出了针对所得动力学的量子算法。为了保持通过张量网络分解实现的压缩优势,我们提出了一种自适应算法,用于对非物理键维度进行正则化,防止其随时间潜在地指数增长。虽然我们的方法适用于任何量子动力学问题,但对于核化学系统的动力学模拟尤其有价值。我们使用为对称氢键系统(即质子化的2,2'-联吡啶)获得的从头算势能展示了我们的算法,并与精确对角化数值结果进行了比较。