Suppr超能文献

无铅卤化物钙钛矿CsBiX(X = Br,I)中的本征超低晶格热导率

Intrinsic ultralow lattice thermal conductivity in lead-free halide perovskites CsBiX (X = Br, I).

作者信息

Ma Jiang-Jiang, Zheng Jing-Jing, Chen Yuxi, Ren Qingyong, Zhang Junfeng, Wang Bao-Tian

机构信息

School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.

Department of Physics, Taiyuan Normal University, Jinzhong, 030619, China.

出版信息

Phys Chem Chem Phys. 2024 Aug 14;26(32):21801-21809. doi: 10.1039/d4cp02005g.

Abstract

Lead-free halide perovskites have recently garnered significant attention due to their rich structural diversity and exceptionally ultralow lattice thermal conductivity (). Here, we employ first-principles calculations in conjunction with self-consistent phonon theory and Boltzmann transport equations to investigate the crystal structure, electronic structure, mechanical properties, and s of two typical vacancy-ordered halide perovskites, denoted with the general formula CsBiX (X = Br, I). Ultralow s of 0.401 and 0.262 W mK at 300 K are predicted for CsBiBr and CsBiI, respectively. Our findings reveal that the ultralow s are mainly associated with the Cs rattling-like motion, vibrations of halide polyhedral frameworks, and strong scattering in the acoustic and low-frequency optical phonon branches. The structural analysis indicates that these phonon dynamic properties are closely relevant to the bonding hierarchy. The presence of the extended Bi-X antibonding states at the valence band maximum contributes to the soft elastic lattice and low phonon group velocities. Compared to CsBiBr, the face-sharing feature and weaker bond strength in CsBiI lead to a softer elasticity modulus and stronger anharmonicity. Additionally, we demonstrate the presence of wave-like in CsBiX by evaluating the coherent contribution. Our work provides the physical microscopic mechanisms of the wave-like in two typical lead-free halide perovskites, which are beneficial to designing intrinsic materials with the feature of ultralow .

摘要

无铅卤化物钙钛矿因其丰富的结构多样性和极低的晶格热导率最近受到了广泛关注。在此,我们结合第一性原理计算、自洽声子理论和玻尔兹曼输运方程,研究了两种典型的空位有序卤化物钙钛矿(通式为CsBiX,X = Br,I)的晶体结构、电子结构、力学性能和热导率。预测CsBiBr和CsBiI在300 K时的超低热导率分别为0.401和0.262 W mK。我们的研究结果表明,超低热导率主要与Cs的类似晃动运动、卤化物多面体框架的振动以及声学和低频光学声子分支中的强散射有关。结构分析表明,这些声子动力学性质与键合层次密切相关。价带最大值处扩展的Bi-X反键态的存在导致了软弹性晶格和低声子群速度。与CsBiBr相比,CsBiI中的面共享特征和较弱的键强度导致了更软的弹性模量和更强的非谐性。此外,我们通过评估相干贡献证明了CsBiX中存在波状热导率。我们 的工作提供了两种典型无铅卤化物钙钛矿中波状热导率的物理微观机制,这有助于设计具有超低热导率特性的本征材料。

相似文献

6
Origin of Ultralow Thermal Conductivity in Metal Halide Perovskites.金属卤化物钙钛矿中超低热导率的起源
ACS Appl Mater Interfaces. 2023 Jun 7;15(22):26755-26765. doi: 10.1021/acsami.3c03499. Epub 2023 May 26.
8
Glassy thermal conductivity in CsBiICl single crystal.CsBiICl 单晶中的玻璃态热导率。
Nat Commun. 2022 Aug 27;13(1):5053. doi: 10.1038/s41467-022-32773-4.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验