Ma Jiang-Jiang, Zheng Jing-Jing, Chen Yuxi, Ren Qingyong, Zhang Junfeng, Wang Bao-Tian
School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China.
Department of Physics, Taiyuan Normal University, Jinzhong, 030619, China.
Phys Chem Chem Phys. 2024 Aug 14;26(32):21801-21809. doi: 10.1039/d4cp02005g.
Lead-free halide perovskites have recently garnered significant attention due to their rich structural diversity and exceptionally ultralow lattice thermal conductivity (). Here, we employ first-principles calculations in conjunction with self-consistent phonon theory and Boltzmann transport equations to investigate the crystal structure, electronic structure, mechanical properties, and s of two typical vacancy-ordered halide perovskites, denoted with the general formula CsBiX (X = Br, I). Ultralow s of 0.401 and 0.262 W mK at 300 K are predicted for CsBiBr and CsBiI, respectively. Our findings reveal that the ultralow s are mainly associated with the Cs rattling-like motion, vibrations of halide polyhedral frameworks, and strong scattering in the acoustic and low-frequency optical phonon branches. The structural analysis indicates that these phonon dynamic properties are closely relevant to the bonding hierarchy. The presence of the extended Bi-X antibonding states at the valence band maximum contributes to the soft elastic lattice and low phonon group velocities. Compared to CsBiBr, the face-sharing feature and weaker bond strength in CsBiI lead to a softer elasticity modulus and stronger anharmonicity. Additionally, we demonstrate the presence of wave-like in CsBiX by evaluating the coherent contribution. Our work provides the physical microscopic mechanisms of the wave-like in two typical lead-free halide perovskites, which are beneficial to designing intrinsic materials with the feature of ultralow .
无铅卤化物钙钛矿因其丰富的结构多样性和极低的晶格热导率最近受到了广泛关注。在此,我们结合第一性原理计算、自洽声子理论和玻尔兹曼输运方程,研究了两种典型的空位有序卤化物钙钛矿(通式为CsBiX,X = Br,I)的晶体结构、电子结构、力学性能和热导率。预测CsBiBr和CsBiI在300 K时的超低热导率分别为0.401和0.262 W mK。我们的研究结果表明,超低热导率主要与Cs的类似晃动运动、卤化物多面体框架的振动以及声学和低频光学声子分支中的强散射有关。结构分析表明,这些声子动力学性质与键合层次密切相关。价带最大值处扩展的Bi-X反键态的存在导致了软弹性晶格和低声子群速度。与CsBiBr相比,CsBiI中的面共享特征和较弱的键强度导致了更软的弹性模量和更强的非谐性。此外,我们通过评估相干贡献证明了CsBiX中存在波状热导率。我们 的工作提供了两种典型无铅卤化物钙钛矿中波状热导率的物理微观机制,这有助于设计具有超低热导率特性的本征材料。