Cheng Jiashun, Jian Lina, Chen Zhaolin, Li Zhuoyuan, Yu Yaobang, Wu Yihang
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
Chembiochem. 2024 Dec 16;25(24):e202400481. doi: 10.1002/cbic.202400481. Epub 2024 Oct 16.
Lipid nanoparticles (LNPs) represent an advanced and highly efficient delivery system for RNA molecules, demonstrating exceptional biocompatibility and remarkable delivery efficiency. This is evidenced by the clinical authorization of three LNP formulations: Patisiran, BNT162b2, and mRNA-1273. To further maximize the efficacy of RNA-based therapy, it is imperative to develop more potent LNP delivery systems that can effectively protect inherently unstable and negatively charged RNA molecules from degradation by nucleases, while facilitating their cellular uptake into target cells. Therefore, this review presents feasible strategies commonly employed for the development of efficient LNP delivery systems. The strategies encompass combinatorial chemistry for large-scale synthesis of ionizable lipids, rational design strategy of ionizable lipids, functional molecules-derived lipid molecules, the optimization of LNP formulations, and the adjustment of particle size and charge property of LNPs. Prior to introducing these developing strategies, in vivo delivery processes of LNPs, a crucial determinant influencing the clinical translation of LNP formulations, is described to better understand how to develop LNP delivery systems.
脂质纳米颗粒(LNPs)是一种先进且高效的RNA分子递送系统,具有出色的生物相容性和显著的递送效率。三种LNP制剂(帕替拉韦、BNT162b2和mRNA-1273)获得临床批准就证明了这一点。为了进一步提高基于RNA的治疗效果,开发更有效的LNP递送系统势在必行,这种系统能够有效保护本质上不稳定且带负电荷的RNA分子不被核酸酶降解,同时促进其被靶细胞摄取。因此,本综述介绍了开发高效LNP递送系统常用的可行策略。这些策略包括用于大规模合成可电离脂质的组合化学、可电离脂质的合理设计策略、功能分子衍生的脂质分子、LNP制剂的优化以及LNP粒径和电荷性质的调整。在介绍这些开发策略之前,先描述了LNP的体内递送过程,这是影响LNP制剂临床转化的关键因素,以便更好地理解如何开发LNP递送系统。