NanoVation Therapeutics Inc. Vancouver, British Columbia, Canada; Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, University of British Columbia Vancouver, British Columbia, Canada; University of British Columbia (UBC) Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.
NanoVation Therapeutics Inc. Vancouver, British Columbia, Canada; NanoMedicines Innovation Network, Vancouver, British Columbia, Canada; University of British Columbia (UBC), Department of Biochemistry and Molecular Biology, Vancouver, British Columbia, Canada.
Eur J Pharm Sci. 2022 Sep 1;176:106234. doi: 10.1016/j.ejps.2022.106234. Epub 2022 Jun 8.
INTRODUCTION: Lipid nanoparticles (LNP) have been successfully used as a platform technology for delivering nucleic acids to the liver. To broaden the application of LNPs in targeting non-hepatic tissues, we developed LNP-based RNA therapies (siRNA or mRNA) for the respiratory tract. Such optimized LNP systems could offer an early treatment strategy for viral respiratory tract infections such as COVID-19. METHODS: We generated a small library of six LNP formulations with varying helper lipid compositions and characterized their hydrodynamic diameter, size distribution and cargo entrapment properties. Next, we screened these LNP formulations for particle uptake and evaluated their potential for transfecting mRNA encoding green fluorescence protein (GFP) or SARS-CoV2 nucleocapsid-GFP fusion reporter gene in a human airway epithelial cell line in vitro. Following LNP-siGFP delivery, GFP protein knockdown efficiency was assessed by flow cytometry to determine %GFP+ cells and median fluorescence intensity (MFI) for GFP. Finally, lead LNP candidates were validated in Friend leukemia virus B (FVB) male mice via intranasal delivery of an mRNA encoding luciferase, using in vivo bioluminescence imaging. RESULTS: Dynamic light scattering revealed that all LNP formulations contained particles with an average diameter of <100 nm and a polydispersity index of <0.2. Human airway epithelial cell lines in culture internalized LNPs with differential GFP transfection efficiencies (73-97%). The lead formulation LNP6 entrapping GFP or Nuc-GFP mRNA demonstrated the highest transfection efficiency (97%). Administration of LNP-GFP siRNA resulted in a significant reduction of GFP protein expression. For in vivo studies, intranasal delivery of LNPs containing helper lipids (DSPC, DOPC, ESM or DOPS) with luciferase mRNA showed significant increase in luminescence expression in nasal cavity and lungs by at least 10 times above baseline control. CONCLUSION: LNP formulations enable the delivery of RNA payloads into human airway epithelial cells, and in the murine respiratory system; they can be delivered to nasal mucosa and lower respiratory tract via intranasal delivery. The composition of helper lipids in LNPs crucially modulates transfection efficiencies in airway epithelia, highlighting their importance in effective delivery of therapeutic products for airways diseases.
简介:脂质纳米颗粒(LNP)已成功用作将核酸递送至肝脏的平台技术。为了拓宽 LNPs 在靶向非肝脏组织中的应用,我们开发了基于 LNP 的用于呼吸道的 RNA 疗法(siRNA 或 mRNA)。这种经过优化的 LNP 系统可为 COVID-19 等病毒性呼吸道感染提供早期治疗策略。
方法:我们生成了一个由六种 LNP 制剂组成的小文库,这些制剂的辅助脂质组成不同,并对其水动力学直径、粒径分布和载药包封性能进行了表征。接下来,我们筛选了这些 LNP 制剂以检测其对人呼吸道上皮细胞系中 GFP 编码 mRNA 的摄取,并评估其转染潜力体外的 SARS-CoV2 核衣壳-GFP 融合报告基因。在 LNP-siGFP 递送后,通过流式细胞术评估 GFP 蛋白敲低效率,以确定 GFP+细胞的百分比和 GFP 的中荧光强度 (MFI)。最后,通过鼻腔内递送编码荧光素的 mRNA,在 Friend 白血病病毒 B (FVB) 雄性小鼠中验证了候选 LNP。使用体内生物发光成像进行验证。
结果:动态光散射显示,所有 LNP 制剂均包含平均直径<100nm 和多分散指数<0.2 的颗粒。在培养的人呼吸道上皮细胞系中,LNPs 的 GFP 转染效率存在差异(73-97%)。包封 GFP 或 Nuc-GFP mRNA 的 LNP6 制剂显示出最高的转染效率(97%)。LNP-GFP siRNA 的给药导致 GFP 蛋白表达显著减少。对于体内研究,含有辅助脂质(DSPC、DOPC、ESM 或 DOPS)的 LNPs 递送 Luciferase mRNA 可使鼻腔和肺部的发光表达至少比基线对照增加 10 倍。
结论:LNP 制剂可将 RNA 有效载荷递送至人呼吸道上皮细胞,并递送至小鼠呼吸道系统;通过鼻腔内递送,可递送至鼻黏膜和下呼吸道。LNPs 中辅助脂质的组成对呼吸道上皮细胞的转染效率具有关键调节作用,这突出了它们在有效递送至呼吸道疾病治疗产品中的重要性。
Eur J Pharm Sci. 2022-9-1
Acc Chem Res. 2022-1-4
Int J Nanomedicine. 2024
Curr Pharm Biotechnol. 2023-4-3
Nano Lett. 2018-5-8
J Control Release. 2024-10
J Control Release. 2022-11
Int J Nanomedicine. 2025-6-23
Nanoscale Adv. 2025-6-3
Nanomedicine (Lond). 2025-5
Int J Nanomedicine. 2024