Department of Cell Biology, Yale University, New Haven, CT.
Yale Stem Cell Center, Yale University, New Haven, CT.
Blood. 2024 Oct 24;144(17):1800-1812. doi: 10.1182/blood.2024023963.
The specification of megakaryocytic (Mk) or erythroid (E) lineages from primary human megakaryocytic-erythroid progenitors (MEPs) is crucial for hematopoietic homeostasis, yet the underlying mechanisms regulating fate specification remain elusive. In this study, we identify RUNX1 as a key modulator of gene expression during MEP fate specification. Overexpression of RUNX1 in primary human MEPs promotes Mk specification, whereas pan-RUNX inhibition favors E specification. Although total RUNX1 levels do not differ between Mk progenitors (MkPs) and E progenitors (ErPs), there are higher levels of serine-phosphorylated RUNX1 in MkPs than ErPs, and mutant RUNX1 with phosphorylated-serine/threonine mimetic mutations (RUNX1-4D) significantly enhances the functional efficacy of RUNX1. To model the effects of RUNX1 variants, we use human erythroleukemia (HEL) cell lines expressing wild-type (WT), phosphomimetic (RUNX1-4D), and nonphosphorylatable (RUNX1-4A) mutants showing that the 3 forms of RUNX1 differentially regulate expression of 2625 genes. Both WT and RUNX1-4D variants increase expression in 40%, and decrease expression in another 40%, with lesser effects of RUNX1-4A. We find a significant overlap between the upregulated genes in WT and RUNX1-4D-expressing HEL cells and those upregulated in primary human MkPs vs MEPs. Although inhibition of known RUNX1 serine/threonine kinases does not affect phosphoserine RUNX1 levels in primary MEPs, specific inhibition of cyclin dependent kinase 9 (CDK9) in MEPs leads to both decreased RUNX1 phosphorylation and increased E commitment. Collectively, our findings show that serine/threonine phosphorylation of RUNX1 promotes Mk fate specification and introduce a novel kinase for RUNX1 linking the fundamental transcriptional machinery with activation of a cell type-specific transcription factor.
巨核细胞(Mk)或红系(E)谱系的特化对于造血稳态至关重要,但调节命运特化的潜在机制仍难以捉摸。在这项研究中,我们确定 RUNX1 是人类巨核细胞-红系祖细胞(MEP)特化过程中基因表达的关键调节剂。在原代人 MEP 中过表达 RUNX1 可促进 Mk 特化,而泛 RUNX 抑制有利于 E 特化。尽管 Mk 祖细胞(MkP)和 E 祖细胞(ErP)之间的总 RUNX1 水平没有差异,但 MkP 中的丝氨酸磷酸化 RUNX1 水平高于 ErP,并且具有磷酸化丝氨酸/苏氨酸模拟突变的突变 RUNX1(RUNX1-4D)显著增强了 RUNX1 的功能功效。为了模拟 RUNX1 变体的影响,我们使用表达野生型(WT)、磷酸模拟型(RUNX1-4D)和非磷酸化型(RUNX1-4A)突变体的人红白血病(HEL)细胞系,表明 3 种形式的 RUNX1 差异调节 2625 个基因的表达。WT 和 RUNX1-4D 变体都将表达增加 40%,而将表达减少 40%,RUNX1-4A 的影响较小。我们发现 WT 和 RUNX1-4D 表达的 HEL 细胞中上调基因与原发性人 MkP 与 MEP 相比上调基因之间存在显著重叠。尽管抑制已知的 RUNX1 丝氨酸/苏氨酸激酶不会影响原代 MEPs 中的磷酸丝氨酸 RUNX1 水平,但 MEPs 中周期蛋白依赖性激酶 9(CDK9)的特异性抑制会导致 RUNX1 磷酸化减少和 E 分化增加。总之,我们的研究结果表明,RUNX1 的丝氨酸/苏氨酸磷酸化促进了 Mk 命运特化,并引入了一种新的 RUNX1 激酶,将基本转录机制与激活细胞类型特异性转录因子联系起来。