Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
Cancer Med. 2024 Jan;13(1):e6945. doi: 10.1002/cam4.6945.
Adaptive mutagenesis observed in colorectal cancer (CRC) cells upon exposure to EGFR inhibitors contributes to the development of resistance and recurrence. Multiple investigations have indicated a parallel between cancer cells and bacteria in terms of exhibiting adaptive mutagenesis. This phenomenon entails a transient and coordinated escalation of error-prone translesion synthesis polymerases (TLS polymerases), resulting in mutagenesis of a magnitude sufficient to drive the selection of resistant phenotypes.
In this study, we conducted a comprehensive pan-transcriptome analysis of the regulatory framework within CRC cells, with the objective of identifying potential transcriptome modules encompassing certain translesion polymerases and the associated transcription factors (TFs) that govern them. Our sampling strategy involved the collection of transcriptomic data from tumors treated with cetuximab, an EGFR inhibitor, untreated CRC tumors, and colorectal-derived cell lines, resulting in a diverse dataset. Subsequently, we identified co-regulated modules using weighted correlation network analysis with a minKMEtostay threshold set at 0.5 to minimize false-positive module identifications and mapped the modules to STRING annotations. Furthermore, we explored the putative TFs influencing these modules using KBoost, a kernel PCA regression model.
Our analysis did not reveal a distinct transcriptional profile specific to cetuximab treatment. Moreover, we elucidated co-expression modules housing genes, for example, POLK, POLI, POLQ, REV1, POLN, and POLM. Specifically, POLK, POLI, and POLQ were assigned to the "blue" module, which also encompassed critical DNA damage response enzymes, for example. BRCA1, BRCA2, MSH6, and MSH2. To delineate the transcriptional control of this module, we investigated associated TFs, highlighting the roles of prominent cancer-associated TFs, such as CENPA, HNF1A, and E2F7.
We found that translesion polymerases are co-regulated with DNA mismatch repair and cell cycle-associated factors. We did not, however, identified any networks specific to cetuximab treatment indicating that the response to EGFR inhibitors relates to a general stress response mechanism.
在暴露于 EGFR 抑制剂的结直肠癌 (CRC) 细胞中观察到的适应性突变是导致耐药性和复发的原因。多项研究表明,癌细胞与细菌在表现出适应性突变方面存在平行关系。这种现象需要易出错的跨损伤合成聚合酶 (TLS 聚合酶) 的短暂和协调的升级,导致足以驱动耐药表型选择的大量突变。
在这项研究中,我们对 CRC 细胞内的调控框架进行了全面的 pan-transcriptome 分析,目的是确定包含某些跨损伤聚合酶和调控它们的相关转录因子 (TF) 的潜在转录组模块。我们的采样策略包括从接受 EGFR 抑制剂西妥昔单抗治疗的肿瘤、未经治疗的 CRC 肿瘤和结直肠衍生的细胞系中收集转录组数据,从而获得了多样化的数据集。随后,我们使用加权相关网络分析 (WGCNA) 并将 minKMEtostay 阈值设置为 0.5 来识别共同调节的模块,以最小化假阳性模块识别,并将模块映射到 STRING 注释。此外,我们使用 KBoost(一种核 PCA 回归模型)探索影响这些模块的潜在 TF。
我们的分析没有揭示出与西妥昔单抗治疗特异性相关的独特转录谱。此外,我们阐明了包含基因的共表达模块,例如 POLK、POLI、POLQ、REV1、POLN 和 POLM。具体来说,POLK、POLI 和 POLQ 被分配到“蓝色”模块,该模块还包含关键的 DNA 损伤反应酶,例如 BRCA1、BRCA2、MSH6 和 MSH2。为了描绘这个模块的转录控制,我们研究了相关的 TF,强调了突出的癌症相关 TF 的作用,例如 CENPA、HNF1A 和 E2F7。
我们发现跨损伤聚合酶与 DNA 错配修复和细胞周期相关因子共同调节。然而,我们没有发现任何与西妥昔单抗治疗特异性相关的网络,这表明对 EGFR 抑制剂的反应与一般应激反应机制有关。