文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Role of in Modulating Membrane Vesicle Composition and Function in Under Neutral and Acidic Conditions.

作者信息

Wang Wenyu, Huang Yiyi, Lin Huancai, Cao Yina

机构信息

Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.

Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.

出版信息

Microorganisms. 2025 Apr 11;13(4):884. doi: 10.3390/microorganisms13040884.


DOI:10.3390/microorganisms13040884
PMID:40284720
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12029584/
Abstract

() plays an important role in dental caries through acid production and biofilm formation. The membrane vesicles (MVs) of are essential for microbial physiology, biofilm activity, and acid adaptation. The OpuB transporter regulates osmotic pressure in ; however, its role in and its MVs remains unexplored. This study investigated the effects of the pathway on MV biogenesis, as well as the proteomic and lipidomic profiles under neutral (pH 7.5) and acidic (pH 5.5) conditions. Nanoflow cytometry showed that the -deficient strain () produced significantly more and smaller MVs than UA159 at pH 7.5, while the difference was not significant at pH 5.5. Lipidomic analysis revealed that affected the lipid composition and concentration of MVs. Proteomic analysis identified the differential enrichment of key metabolic processes associated with stress, including DNA repair. These findings highlight that is an important regulator of MV biosynthesis and composition and may affect the environmental adaptability of by regulating MVs.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/81c3636a3fcf/microorganisms-13-00884-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/342730741767/microorganisms-13-00884-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/0aaa40f065ea/microorganisms-13-00884-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/cf068c918175/microorganisms-13-00884-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/5504ab02b8b0/microorganisms-13-00884-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/54973df3237d/microorganisms-13-00884-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/b430d1bf6200/microorganisms-13-00884-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/aa231071ff1e/microorganisms-13-00884-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/6253c099390b/microorganisms-13-00884-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/6c490d885f69/microorganisms-13-00884-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/81c3636a3fcf/microorganisms-13-00884-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/342730741767/microorganisms-13-00884-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/0aaa40f065ea/microorganisms-13-00884-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/cf068c918175/microorganisms-13-00884-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/5504ab02b8b0/microorganisms-13-00884-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/54973df3237d/microorganisms-13-00884-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/b430d1bf6200/microorganisms-13-00884-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/aa231071ff1e/microorganisms-13-00884-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/6253c099390b/microorganisms-13-00884-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/6c490d885f69/microorganisms-13-00884-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2e0/12029584/81c3636a3fcf/microorganisms-13-00884-g010.jpg

相似文献

[1]
Role of in Modulating Membrane Vesicle Composition and Function in Under Neutral and Acidic Conditions.

Microorganisms. 2025-4-11

[2]
Effects of opuB on the growth and biofilm formation of Streptococcus mutans under acid stress.

Microb Pathog. 2025-8

[3]
Proteomic and metabolic characterization of membrane vesicles derived from Streptococcus mutans at different pH values.

Appl Microbiol Biotechnol. 2020-11

[4]
Multiple factors are involved in regulation of extracellular membrane vesicle biogenesis in Streptococcus mutans.

Mol Oral Microbiol. 2021-2

[5]
Streptococcus mutans membrane vesicles inhibit the biofilm formation of Streptococcus gordonii and Streptococcus sanguinis.

AMB Express. 2022-12-12

[6]
Membrane Vesicles Harboring Glucosyltransferases Augment Biofilm Development.

Front Microbiol. 2020-9-11

[7]
Effects of Complex DNA and MVs with GTF Extracted from on the Oral Biofilm.

Molecules. 2019-8-28

[8]
Effects of pH on the Properties of Membrane Vesicles Including Glucosyltransferase in .

Microorganisms. 2021-11-6

[9]
Roles of membrane vesicles from Streptococcus mutans for the induction of antibodies to glucosyltransferase in mucosal immunity.

Microb Pathog. 2020-12

[10]
Membrane Vesicles Enhance Pathogenicity and Carbohydrate Metabolism.

Front Cell Infect Microbiol. 2022

本文引用的文献

[1]
Quantitative fluorescent nanoparticle tracking analysis and nano-flow cytometry enable advanced characterization of single extracellular vesicles.

J Extracell Biol. 2025-1-8

[2]
Golgi-derived extracellular vesicle production induced by SARS-CoV-2 envelope protein.

Apoptosis. 2025-2

[3]
Integrated proteomics and metabolomics analyses reveal new insights into the antitumor effects of valproic acid plus simvastatin combination in a prostate cancer xenograft model associated with downmodulation of YAP/TAZ signaling.

Cancer Cell Int. 2024-11-16

[4]
Hypoxia-dependent recruitment of error-prone DNA polymerases to genome replication.

Oncogene. 2025-1

[5]
Bacterial membrane vesicles: formation, functions, and roles in bacterial-phage interactions.

World J Microbiol Biotechnol. 2024-9-21

[6]
Analysis of translesion polymerases in colorectal cancer cells following cetuximab treatment: A network perspective.

Cancer Med. 2024-1

[7]
Methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.

DNA Repair (Amst). 2024-9

[8]
E3 ubiquitin ligase RNF2 protects polymerase ι from destabilization.

Biochim Biophys Acta Mol Cell Res. 2024-6

[9]
Effect of resveratrol on the biofilm formation and physiological properties of avian pathogenic Escherichia coli.

J Proteomics. 2021-10-30

[10]
Membrane Vesicle Production as a Bacterial Defense Against Stress.

Front Microbiol. 2020-12-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索