Liu Yanbo, Maki Yuta, Okamoto Ryo, Satoh Ayano, Todokoro Yasuto, Kanemitsu Yurie, Otani Keito, Kajihara Yasuhiro
Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan.
Forefront Research Center, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, 560-0043, Japan.
Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202411213. doi: 10.1002/anie.202411213. Epub 2024 Oct 24.
A bioinspired semisynthesis of human-interleukin-6 bearing N-glycan at Asn143 (143glycosyl-IL-6) was performed by intentional glycosylation effects and protein folding chemistry for regioselective peptide-backbone activation. 143Glycosyl-IL-6 is a genetically coded cytokine, but isolation was difficult owing to a tiny amount. IL6-polypeptide (1-141-position) with an intentionally inserted cysteine at 142-position was expressed in E. coli. The expressed polypeptide was treated with a chemical folding process to make a specific helices bundle conformation through native two-disulfide bonds (43-49 and 72-82). Utilizing the successfully formed free-142-cysteine, sequential conversions using cyanylation of 142-cysteine, hydrazinolysis, and thioesterification created a long polypeptide (1-141)-thioester. However, the resultant polypeptide-thioester caused considerable aggregation owing to a highly hydrophobic peptide sequence. After the reduction of two-disulfide bonds of polypeptide (1-141)-thioester, an unprecedented hydrophilic N-glycan tag was inserted at the resultant cysteine thiols. The N-glycan tags greatly stabilized polypeptide-thioester. The subsequent native chemical ligation and desulfurization successfully gave a whole 143glycosyl-IL-6 polypeptide (183-amino acids). Removal of four N-glycan tags and immediate one-pot in vitro folding protocol efficiently produced the folded 143glycosyl-IL-6. The folded 143glycosyl-IL-6 exhibited potent cell proliferation activity. The combined studies with molecular dynamics simulation, semisynthesis, and bioassays predict the bioactive conformation of latent 143glycosyl-IL-6.
通过有意的糖基化作用和蛋白质折叠化学方法,对人白细胞介素-6(在Asn143处带有N-聚糖,即143糖基化-IL-6)进行了仿生半合成,以实现区域选择性肽主链活化。143糖基化-IL-6是一种基因编码的细胞因子,但由于产量极少,分离困难。在大肠杆菌中表达了在142位有意插入半胱氨酸的IL6多肽(1-141位)。对表达的多肽进行化学折叠处理,通过天然的二硫键(43-49和72-82)形成特定的螺旋束构象。利用成功形成的游离142位半胱氨酸,通过142位半胱氨酸的氰化、肼解和硫酯化进行顺序转化,生成了长多肽(1-141)-硫酯。然而,由于多肽序列高度疏水,所得的多肽硫酯导致了大量聚集。在还原多肽(1-141)-硫酯的二硫键后,在所得的半胱氨酸硫醇处插入了前所未有的亲水性N-聚糖标签。N-聚糖标签极大地稳定了多肽硫酯。随后的天然化学连接和脱硫成功得到了完整的143糖基化-IL-6多肽(183个氨基酸)。去除四个N-聚糖标签并立即进行一锅体外折叠方案,有效地产生了折叠后的l43糖基化-IL-6。折叠后的143糖基化-IL-6表现出强大的细胞增殖活性。结合分子动力学模拟、半合成和生物测定的研究预测了潜在的143糖基化-IL-6的生物活性构象。