Suppr超能文献

采用印楝油、废弃食用油和盐藻油的二元和三元混合物对 CI 发动机排放和性能的研究与预测。

Investigation and prediction on emissions and performance of CI engine employing binary and ternary blends with Karanja oil, used cooking oil, and Dunaliella salina oil.

机构信息

Department of Mechanical-Mechatronics Engineering, The LNM Institute of Information Technology, Jaipur, Rajasthan, 302031, India.

Centre for Energy and Environmental Studies, The LNM Institute of Information Technology, Jaipur, Rajasthan, 302031, India.

出版信息

Environ Sci Pollut Res Int. 2024 Aug;31(38):50839-50856. doi: 10.1007/s11356-024-34557-3. Epub 2024 Aug 5.

Abstract

Massive consumption of fossil fuels and alarming environmental degradation are motivating researchers to learn about alternative fuels. Straight vegetable oils are an alternative to fossil fuels to meet the standards. Microalgae is also a viable carbon-neutral alternative to depleting conventional fuel sources, a solution to the industrial requirement of organic consumables and an option for a green and sustainable economy for biofuels. In the present study, lipid was extracted from Karanja seeds and Dunaliella salina biomass. These were used to prepare different binary and ternary fuel blends with conventional reference diesel fuel with different proportions along with used cooking oil with their concentrations ranging from 10 to 20% (v/v). The influence of these blends on performance and emissions characteristics in CI engines has delved at varying engine loads from 0 to 100%. The binary blend with Dunaliella salina oil has increased the performance characteristics while decreasing all the major emission parameters compared to reference diesel fuel and shows a significant improvement among binary blends. Ternary blends with Dunaliella salina oil, on the other hand, have improved performance while lowering emission parameters when compared to reference diesel fuel and demonstrate a substantial improvement across ternary blends. For predicting the performance and emission characteristics of binary and ternary blends, an artificial neural network-based model was developed. The optimum blends, OB6 (90% RDF, 10% DO) and OB8 (80% RDF, 10% DO, 10% UCO), improved BSFC by 10.71%, BTE by 14.23%, and reduced BSEC by 12.45% at full load. Emissions were generally reduced, with CO decreasing by up to 39.39%. The simulation results demonstrated that the created 4-7-7 model was capable of accurately predicting the performance and emission characteristics of various alternative fuel blends and indicating a stronger correlation between the predicted and observed values, having a high correlation coefficient of 0.9974. Binary and ternary blends with straight vegetable oils improved CI engine performance and pollutants compared to reference diesel fuel, indicating they have the potential to replace conventional fuels for sustainable development.

摘要

大量消耗化石燃料和惊人的环境恶化促使研究人员寻求替代燃料。植物油是一种替代化石燃料的选择,以满足标准。微藻也是一种可行的碳中和替代方案,可以替代日益枯竭的传统燃料来源,满足工业对有机消耗品的需求,是生物燃料绿色可持续经济的选择。在本研究中,从麻疯树种子和杜氏盐藻生物质中提取了脂质。这些脂质被用于制备不同的二元和三元燃料混合物,与常规参考柴油燃料按不同比例混合,并与用过的食用油混合,浓度范围为 10%至 20%(体积/体积)。在不同的发动机负荷下(0 至 100%),研究了这些混合物对压燃式发动机性能和排放特性的影响。与参考柴油燃料相比,含有杜氏盐藻油的二元混合物提高了性能特性,同时降低了所有主要的排放参数,并在二元混合物中显示出显著的改进。另一方面,与参考柴油燃料相比,含有杜氏盐藻油的三元混合物在提高性能的同时降低了排放参数,并在三元混合物中表现出显著的改善。为了预测二元和三元混合物的性能和排放特性,开发了一种基于人工神经网络的模型。最佳混合物 OB6(90% RDF,10% DO)和 OB8(80% RDF,10% DO,10% UCO)在满载时提高了 10.71%的比油耗、14.23%的有效热效率和 12.45%的比制动有效功率,同时降低了排放。一般来说,排放物减少了,CO 减少了高达 39.39%。模拟结果表明,所创建的 4-7-7 模型能够准确预测各种替代燃料混合物的性能和排放特性,并显示出预测值和观察值之间更强的相关性,相关系数高达 0.9974。与参考柴油燃料相比,含有直链植物油的二元和三元混合物提高了压燃式发动机的性能和污染物排放,表明它们有可能替代传统燃料,实现可持续发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验