具有整合生物信号的软骨陷窝仿生水凝胶微球可促进内源性关节软骨再生。
Cartilage lacuna-biomimetic hydrogel microspheres endowed with integrated biological signal boost endogenous articular cartilage regeneration.
作者信息
Li Hao, Zhao Tianyuan, Yuan Zhiguo, Gao Tianze, Yang Yongkang, Li Runmeng, Tian Qinyu, Tang Peifu, Guo Quanyi, Zhang Licheng
机构信息
School of Medicine, Nankai University, Tianjin, China.
Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, China.
出版信息
Bioact Mater. 2024 Jul 12;41:61-82. doi: 10.1016/j.bioactmat.2024.06.037. eCollection 2024 Nov.
Despite numerous studies on chondrogenesis, the repair of cartilage-particularly the reconstruction of cartilage lacunae through an all-in-one advanced drug delivery system remains limited. In this study, we developed a cartilage lacuna-like hydrogel microsphere system endowed with integrated biological signals, enabling sequential immunomodulation and endogenous articular cartilage regeneration. We first integrated the chondrogenic growth factor transforming growth factor-β3 (TGF-β3) into mesoporous silica nanoparticles (MSNs). Then, TGF-β3@MSNs and insulin-like growth factor 1 (IGF-1) were encapsulated within microspheres made of polydopamine (pDA). In the final step, growth factor-loaded MSN@pDA and a chitosan (CS) hydrogel containing platelet-derived growth factor-BB (PDGF-BB) were blended to produce growth factors loaded composite microspheres (GFs@μS) using microfluidic technology. The presence of pDA reduced the initial acute inflammatory response, and the early, robust release of PDGF-BB aided in attracting endogenous stem cells. Over the subsequent weeks, the continuous release of IGF-1 and TGF-β3 amplified chondrogenesis and matrix formation. μS were incorporated into an acellular cartilage extracellular matrix (ACECM) and combined with a polydopamine-modified polycaprolactone (PCL) structure to produce a tissue-engineered scaffold that mimicked the structure of the cartilage lacunae evenly distributed in the cartilage matrix, resulting in enhanced cartilage repair and patellar cartilage protection. This research provides a strategic pathway for optimizing growth factor delivery and ensuring prolonged microenvironmental remodeling, leading to efficient articular cartilage regeneration.
尽管对软骨形成进行了大量研究,但软骨修复——尤其是通过一体化先进药物递送系统重建软骨陷窝仍然有限。在本研究中,我们开发了一种具有整合生物信号的软骨陷窝样水凝胶微球系统,能够进行顺序免疫调节和内源性关节软骨再生。我们首先将软骨生成生长因子转化生长因子-β3(TGF-β3)整合到介孔二氧化硅纳米颗粒(MSN)中。然后,将TGF-β3@MSN和胰岛素样生长因子1(IGF-1)封装在由聚多巴胺(pDA)制成的微球内。在最后一步中,将负载生长因子的MSN@pDA与含有血小板衍生生长因子-BB(PDGF-BB)的壳聚糖(CS)水凝胶混合,利用微流控技术制备负载生长因子的复合微球(GFs@μS)。pDA的存在减少了初始急性炎症反应,PDGF-BB的早期、强劲释放有助于吸引内源性干细胞。在随后的几周内,IGF-1和TGF-β3的持续释放增强了软骨生成和基质形成。将μS整合到无细胞软骨细胞外基质(ACECM)中,并与聚多巴胺修饰的聚己内酯(PCL)结构相结合,制备出一种组织工程支架,该支架模仿了均匀分布在软骨基质中的软骨陷窝结构,从而增强了软骨修复和髌软骨保护。本研究为优化生长因子递送和确保长期微环境重塑提供了一条战略途径,从而实现高效的关节软骨再生。