Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, PR China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Acta Biomater. 2020 Mar 15;105:44-55. doi: 10.1016/j.actbio.2020.01.048. Epub 2020 Feb 5.
Damaged articular cartilage has limited self-healing capabilities, leading to degeneration that affects millions of people. Although cartilage tissue engineering is considered a promising approach for treatment, robust and long-term chondrogenesis within a 3-dimensional (3D) scaffold remains a major challenge for complete regeneration. Most current approaches involve incorporation of transforming growth factor-β (TGF-β) into the scaffold, but have limited utility owing to the short functional half-life and/or rapid clearance of TGF-β. In this study, we have tested the incorporation of graphene oxide nanosheets (GO) within a photopolymerizable poly-D, l-lactic acid/polyethylene glycol (PDLLA) hydrogel, for its applicability in sustained release of the chondroinductive growth factor TGF-β3. We found that with GO incorporation, the hydrogel scaffold (GO/PDLLA) exhibited enhanced initial mechanical strength, i.e., increased compressive modulus, and supported long-term, sustained release of TGF-β3 for up to 4 weeks. In addition, human bone marrow-derived mesenchymal stem cells (hBMSCs) seeded within TGF-β3 loaded GO/PDLLA hydrogels displayed high cell viability and improved chondrogenesis in a TGF-β3 concentration-dependent manner. hBMSCs cultured in GO/PDLLA also demonstrated significantly higher chondrogenic gene expression, including aggrecan, collagen type II and SOX9, and cartilage matrix production when compared to cultures maintained in GO-free scaffolds containing equivalent amounts of TGF-β3. Upon subcutaneous implantation in vivo, hBMSC-seeded TGF-β3-GO/PDLLA hydrogel constructs displayed considerably greater cartilage matrix than their TGF-β3/PDLLA counterparts without GO. Taken together, these findings support the potential application of GO in optimizing TGF-β3 induced hBMSC chondrogenesis for cartilage tissue engineering. STATEMENT OF SIGNIFICANCE: In this work, we have developed a graphene oxide (GO) incorporated, photocrosslinked PDLLA hybrid hydrogel for localized delivery and sustained release of loaded TGF-β3 to seeded cells. The incorporation of GO in PDLLA hydrogel suppressed the burst release of TGF-β3, and significantly prolonged the retention time of the TGF-β3 initially loaded in the hydrogel. Additionally, the GO improved the initial compressive strength of the hydrogel. Both in vitro analyses and in vivo implantation results showed that the GO/PDLLA constructs seeded with human mesenchymal stem cells (hMSCs) showed significantly higher cartilage formation, compared to GO-free scaffolds containing equivalent amount of TGF-β3. Findings from this work suggest the potential application of the GO-TGF/PDLLA hydrogel as a functional scaffold for hMSC-based cartilage tissue engineering.
关节软骨损伤的自我修复能力有限,导致其退化,影响了数以百万计的人。虽然软骨组织工程被认为是一种有前途的治疗方法,但在三维(3D)支架内实现稳健和长期的软骨生成仍然是完全再生的主要挑战。目前大多数方法都涉及将转化生长因子-β(TGF-β)掺入支架中,但由于 TGF-β 的功能半衰期短和/或清除速度快,其应用受到限制。在这项研究中,我们测试了将氧化石墨烯纳米片(GO)掺入可光聚合的聚-D,L-乳酸/聚乙二醇(PDLLA)水凝胶中,以将其应用于诱导生长因子 TGF-β3 的持续释放。我们发现,随着 GO 的掺入,水凝胶支架(GO/PDLLA)表现出增强的初始机械强度,即增加压缩模量,并支持 TGF-β3 的长期持续释放,长达 4 周。此外,负载 TGF-β3 的 GO/PDLLA 水凝胶中接种的人骨髓间充质干细胞(hBMSCs)表现出高细胞活力,并以 TGF-β3 浓度依赖的方式改善了软骨生成。与在不含 GO 但含有等量 TGF-β3 的 GO 免费支架中培养的细胞相比,在 GO/PDLLA 中培养的 hBMSCs 表现出显著更高的软骨生成基因表达,包括聚集蛋白聚糖、II 型胶原和 SOX9,以及软骨基质的产生。体内皮下植入后,负载 TGF-β3 的 GO/PDLLA 水凝胶构建体的软骨基质明显大于无 GO 的 TGF-β3/PDLLA 对应物。总之,这些发现支持 GO 在优化 TGF-β3 诱导的 hBMSC 软骨生成用于软骨组织工程中的潜在应用。 意义声明:在这项工作中,我们开发了一种掺入氧化石墨烯(GO)的光交联 PDLLA 杂化水凝胶,用于负载 TGF-β3 的局部递送和持续释放到接种的细胞。GO 的掺入抑制了 TGF-β3 的爆发释放,并显著延长了最初负载在水凝胶中的 TGF-β3 的保留时间。此外,GO 提高了水凝胶的初始压缩强度。体外分析和体内植入结果均表明,与负载等量 TGF-β3 的不含 GO 的支架相比,负载 TGF-β3 的 GO/PDLLA 构建体中接种的人间充质干细胞(hMSCs)表现出更高的软骨形成。这项工作的结果表明,GO-TGF/PDLLA 水凝胶作为基于 hMSC 的软骨组织工程的功能性支架具有潜在的应用。