Elyasi Fatemeh, Manduchi Roberto
University of California, Santa Cruz, USA.
Comput Help People Spec Needs. 2024 Jul;14750:400-407. doi: 10.1007/978-3-031-62846-7_48. Epub 2024 Jul 5.
Wayfinding systems using inertial data recorded from a smartphone carried by the walker have great potential for increasing mobility independence of blind pedestrians. Pedestrian dead-reckoning (PDR) algorithms for localization require estimation of the step length of the walker. Prior work has shown that step length can be reliably predicted by processing the inertial data recorded by the smartphone with a simple machine learning algorithm. However, this prior work only considered sighted walkers, whose gait may be different from that of blind walkers using a long cane or a dog guide. In this work, we show that a step length estimation network trained on data from sighted walkers performs poorly when tested on blind walkers, and that retraining with data from blind walkers can dramatically increase the accuracy of step length prediction.
利用步行者携带的智能手机记录的惯性数据的寻路系统,在提高盲人行人行动独立性方面具有巨大潜力。用于定位的行人航位推算(PDR)算法需要估计步行者的步长。先前的研究表明,通过使用简单的机器学习算法处理智能手机记录的惯性数据,可以可靠地预测步长。然而,这项先前的研究只考虑了有视力的步行者,他们的步态可能与使用长手杖或导盲犬的盲人步行者不同。在这项工作中,我们表明,在有视力的步行者数据上训练的步长估计网络在对盲人步行者进行测试时表现不佳,而用盲人步行者的数据重新训练可以显著提高步长预测的准确性。