Suppr超能文献

使用手持惯性传感器进行步长估计。

Step length estimation using handheld inertial sensors.

机构信息

PLAN Group, Schulich School of Engineering, The University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.

出版信息

Sensors (Basel). 2012;12(7):8507-25. doi: 10.3390/s120708507. Epub 2012 Jun 25.

Abstract

In this paper a novel step length model using a handheld Micro Electrical Mechanical System (MEMS) is presented. It combines the user's step frequency and height with a set of three parameters for estimating step length. The model has been developed and trained using 12 different subjects: six men and six women. For reliable estimation of the step frequency with a handheld device, the frequency content of the handheld sensor's signal is extracted by applying the Short Time Fourier Transform (STFT) independently from the step detection process. The relationship between step and hand frequencies is analyzed for different hand's motions and sensor carrying modes. For this purpose, the frequency content of synchronized signals collected with two sensors placed in the hand and on the foot of a pedestrian has been extracted. Performance of the proposed step length model is assessed with several field tests involving 10 test subjects different from the above 12. The percentages of error over the travelled distance using universal parameters and a set of parameters calibrated for each subject are compared. The fitted solutions show an error between 2.5 and 5% of the travelled distance, which is comparable with that achieved by models proposed in the literature for body fixed sensors only.

摘要

本文提出了一种使用手持式微机电系统(MEMS)的新型步长模型。它将用户的步频和步高与一组三个参数结合起来,用于估计步长。该模型已经使用 12 个不同的对象进行了开发和训练:6 个男性和 6 个女性。为了使用手持式设备可靠地估计步频,通过独立于步检测过程应用短时傅里叶变换(STFT)来提取手持式传感器信号的频率内容。分析了不同手部运动和传感器携带模式下步频和手频之间的关系。为此,提取了放置在手和行人脚上的两个传感器采集的同步信号的频率内容。使用涉及 10 个与上述 12 个不同的测试对象的几个现场测试评估了所提出的步长模型的性能。使用通用参数和为每个对象校准的一组参数计算的旅行距离的误差百分比进行了比较。拟合解决方案显示,旅行距离的误差在 2.5%到 5%之间,这与文献中仅针对固定在身体上的传感器提出的模型的误差相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7edd/3444061/cb229deaffc9/sensors-12-08507f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验