Zhou Yufan, Mahmoud Ali Hossam Salah, Xi Jinshan, Yao Dongdong, Zhang Huanhuan, Li Xujiao, Yu Kun, Zhao Fengyun
The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germplasm Resources of the Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.
Front Plant Sci. 2024 Jul 22;15:1378749. doi: 10.3389/fpls.2024.1378749. eCollection 2024.
Due to the enclosed environment of greenhouse grape production, the supply of CO required for photosynthesis is often insufficient, leading to photosynthetic downregulation and reduced yield. Currently, the optimal CO concentration for grape production in greenhouses is unknown, and the precise control of actual CO levels remains a challenge. This study aims to investigate the effects of different CO concentrations on the photosynthetic characteristics and yield of grapes, to validate the feasibility of a CO gas irrigation system, and to identify the optimal CO concentration for greenhouse grape production. In this study, a CO gas irrigation system combining CO enrichment and gas irrigation techniques was used with a 5-year-old Eurasian grape variety ( L.) 'Flame Seedless.' Four CO concentration treatments were applied: 500 ppm (500 ± 30 µmol·mol), 700 ppm (700 ± 30 µmol·mol), 850 ppm (850 ± 30 µmol·mol), and 1,000 ppm (1,000 ± 30 µmol·mol). As CO concentration increased, chlorophyll a, chlorophyll b, and carotenoids in grape leaves all reached maximum values at 700 ppm and 850 ppm during the same irrigation cycle, while the chlorophyll a/b ratio was lower than at other concentrations. The net photosynthetic rate (Pn) and water use efficiency (WUE) of grape leaves were the highest at 700 ppm. The transpiration rate and stomatal conductance at 700 ppm and 850 ppm were significantly lower than those at other concentrations. The light saturation point and apparent quantum efficiency reached their maximum at 850 ppm, followed by 700 ppm. Additionally, the maximum net photosynthetic rate, carboxylation efficiency, electron transport rate, and activities of SOD, CAT, POD, PPO, and RuBisCO at 700 ppm were significantly higher than at other concentrations, with the highest yield recorded at 14.54 t·hm. However, when the CO concentration reached 1,000 ppm, both photosynthesis and yield declined to varying degrees. Under the experimental conditions, the optimal CO concentration for greenhouse grape production was 700 ppm, with excessive CO levels gradually inhibiting photosynthesis and yield. The results provide a theoretical basis for the future application of CO fertilization and gas irrigation techniques in controlled greenhouse grape production.
由于温室葡萄生产环境封闭,光合作用所需的二氧化碳供应常常不足,导致光合下调和产量降低。目前,温室葡萄生产的最佳二氧化碳浓度尚不清楚,精确控制实际二氧化碳水平仍是一项挑战。本研究旨在探究不同二氧化碳浓度对葡萄光合特性和产量的影响,验证二氧化碳气体灌溉系统的可行性,并确定温室葡萄生产的最佳二氧化碳浓度。在本研究中,采用了一种结合二氧化碳富集和气体灌溉技术的二氧化碳气体灌溉系统,以5年生欧亚葡萄品种(L.)‘火焰无核’为试材。设置了4个二氧化碳浓度处理:500 ppm(500±30µmol·mol)、700 ppm(700±30µmol·mol)、850 ppm(850±30µmol·mol)和1000 ppm(1000±30µmol·mol)。随着二氧化碳浓度升高,在相同灌溉周期内,葡萄叶片中的叶绿素a、叶绿素b和类胡萝卜素在700 ppm和850 ppm时均达到最大值,而叶绿素a/b比值低于其他浓度。葡萄叶片的净光合速率(Pn)和水分利用效率(WUE)在700 ppm时最高。700 ppm和850 ppm时的蒸腾速率和气孔导度显著低于其他浓度。光饱和点和表观量子效率在850 ppm时达到最大值,其次是700 ppm。此外,700 ppm时的最大净光合速率、羧化效率、电子传递速率以及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、多酚氧化酶(PPO)和核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)的活性均显著高于其他浓度,产量最高达14.54 t·hm 。然而,当二氧化碳浓度达到1000 ppm时,光合作用和产量均有不同程度下降。在试验条件下,温室葡萄生产的最佳二氧化碳浓度为700 ppm,二氧化碳水平过高会逐渐抑制光合作用和产量。研究结果为今后在可控温室葡萄生产中应用二氧化碳施肥和气体灌溉技术提供了理论依据。