Suppr超能文献

用于预测失代偿性心力衰竭48个月死亡率的多因素列线图的开发与验证

Development and validation of a multifactorial nomogram to predict 48 month mortality in decompensated heart failure.

作者信息

Zhuang Chenlin, Chen Yudai, Weng Kongyan, Zhuang Mei, Yu Huizhen, Zhu Pengli

机构信息

Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.

Department of Cardiovascular Medicine, Fujian Provincial Hospital, Jinshan Branch, Fuzhou, China.

出版信息

ESC Heart Fail. 2024 Dec;11(6):4071-4080. doi: 10.1002/ehf2.15006. Epub 2024 Aug 6.

Abstract

BACKGROUND AND AIMS

As the incidence of heart failure (HF) increases, the need for practical tools to evaluate the long-term prognosis in these patients remains critical. Our study aimed to develop a 48 month prediction model for all-cause mortality in decompensated HF patients using available clinical indicators.

METHODS

HF patients (n = 503), 60 years or older, were divided into a training cohort (n = 402) and a validation cohort (n = 101). Data on demographics, comorbidities, laboratory results and medications were gathered. Prediction models were developed using the Prognostic Nutritional Index (PNI), cholinesterase (ChE) and a multifactorial nomogram incorporating clinical variables. These models were constructed using the least absolute shrinkage and selection operator algorithm and multivariate logistic regression analysis. The performance of the model was assessed in terms of calibration, discrimination and clinical utility.

RESULTS

The mean age was 77.11 ± 8.85 years, and 216 (42.9%) were female. The multifactorial nomogram included variables of ChE, lymphocyte count, albumin, serum creatinine and N-terminal pro-brain natriuretic peptide (all P < 0.05). In the training cohort, the nomogram's C-index was 0.926 [95% confidence interval (CI) 0.896-0.950], outperforming the PNI indices at 0.883 and ChE at 0.804 (Z-tests, P < 0.05). The C-index in the validation cohort was 0.913 (Z-tests, P < 0.05). Calibration and decision curve analysis confirmed model reliability, indicating a more significant net benefit than PNI and ChE alone.

CONCLUSIONS

Both the ChE- and PNI-based prediction models effectively predict the long-term prognosis in patients over 60 years of age with decompensated HF. The multifactorial nomogram model shows superior performance, improving clinical decision-making and patient outcomes.

摘要

背景与目的

随着心力衰竭(HF)发病率的上升,对于评估这些患者长期预后的实用工具的需求仍然至关重要。我们的研究旨在利用可用的临床指标,为失代偿性HF患者开发一个48个月全因死亡率预测模型。

方法

将年龄在60岁及以上的HF患者(n = 503)分为训练队列(n = 402)和验证队列(n = 101)。收集了人口统计学、合并症、实验室检查结果和用药数据。使用预后营养指数(PNI)、胆碱酯酶(ChE)以及纳入临床变量的多因素列线图开发预测模型。这些模型采用最小绝对收缩和选择算子算法以及多变量逻辑回归分析构建。从校准、区分度和临床实用性方面评估模型的性能。

结果

平均年龄为77.11 ± 8.85岁,女性有216例(42.9%)。多因素列线图纳入了ChE、淋巴细胞计数、白蛋白、血清肌酐和N末端脑钠肽前体等变量(所有P < 0.05)。在训练队列中,列线图的C指数为0.926 [95%置信区间(CI)0.896 - 0.950],优于PNI指数(0.883)和ChE(0.804)(Z检验,P < 0.05)。验证队列中的C指数为0.913(Z检验,P < 0.05)。校准和决策曲线分析证实了模型的可靠性,表明其净效益比单独使用PNI和ChE更显著。

结论

基于ChE和PNI的预测模型均能有效预测60岁以上失代偿性HF患者的长期预后。多因素列线图模型表现出更优性能,可改善临床决策和患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dacc/11631327/2d6c0d0cb6f9/EHF2-11-4071-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验