Suppr超能文献

心力衰竭全因死亡率综合预后模型的开发与验证:结合临床、心电图和超声心动图参数的综合分析

Development and validation of an integrated prognostic model for all-cause mortality in heart failure: a comprehensive analysis combining clinical, electrocardiographic, and echocardiographic parameters.

作者信息

Li Yahui, Xu Jiayu, Liu Xuhui, Wang Xujie, Zhao Chunxia, He Kunlun

机构信息

Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.

First Medical Center of People's Liberation Army General Hospital, Beijing, 100853, China.

出版信息

BMC Cardiovasc Disord. 2025 Mar 26;25(1):221. doi: 10.1186/s12872-025-04642-7.

Abstract

BACKGROUND

Accurate risk prediction in heart failure remains challenging due to its complex pathophysiology. We aimed to develop and validate a comprehensive prognostic model integrating demographic, electrocardiographic, echocardiographic, and biochemical parameters.

METHODS

We conducted a retrospective cohort study of 445 heart failure patients. The cohort was randomly divided into training (n = 312) and validation (n = 133) sets. Feature selection was performed using LASSO regression followed by backward stepwise Cox regression. A nomogram was constructed based on independent predictors. Model performance was assessed through discrimination, calibration, and decision curve analyses. Random survival forest analysis was conducted to validate variable importance.

RESULTS

During a median follow-up of 4.14 years, 142 deaths (31.91%) occurred. Our model development followed a systematic approach: initial feature selection using LASSO regression identified 15 potential predictors, which were further refined to nine independent predictors through backward stepwise Cox regression. The final predictors included age, NYHA class, left ventricular systolic dysfunction, atrial septal defect, aortic valve annulus calcification, tricuspid regurgitation severity, QRS duration, T wave offset, and NT-proBNP. The integrated model demonstrated good discrimination for 2-, 3-, and 5-year mortality prediction in both training (AUCs: 0.726, 0.755, 0.809) and validation cohorts (AUCs: 0.686, 0.678, 0.706). Calibration plots and decision curve analyses confirmed the model's reliability and clinical utility across different time horizons. A nomogram was constructed for individualized risk prediction. Kaplan-Meier analyses of individual predictors revealed significant stratification of survival outcomes, while restricted cubic spline analyses demonstrated non-linear relationships between continuous variables and mortality risk. Random survival forest analysis identified the top five predictors (age, NT-proBNP, QRS duration, tricuspid regurgitation severity, NYHA), which were compared with our nine-variable model, confirming the superior performance of the integrated model across all time points.

CONCLUSIONS

Our integrated prognostic model showed robust performance in predicting all-cause mortality in heart failure patients. The model's ability to provide individualized risk estimates through a nomogram may facilitate clinical decision-making and patient stratification.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

由于心力衰竭复杂的病理生理学,准确的风险预测仍然具有挑战性。我们旨在开发并验证一个整合人口统计学、心电图、超声心动图和生化参数的综合预后模型。

方法

我们对445例心力衰竭患者进行了一项回顾性队列研究。该队列被随机分为训练集(n = 312)和验证集(n = 133)。使用LASSO回归进行特征选择,随后进行向后逐步Cox回归。基于独立预测因子构建列线图。通过区分度、校准和决策曲线分析评估模型性能。进行随机生存森林分析以验证变量的重要性。

结果

在中位随访4.14年期间,发生了142例死亡(31.91%)。我们的模型开发采用了系统方法:使用LASSO回归进行初始特征选择,确定了15个潜在预测因子,通过向后逐步Cox回归进一步细化为9个独立预测因子。最终的预测因子包括年龄、纽约心脏协会(NYHA)分级、左心室收缩功能障碍、房间隔缺损、主动脉瓣环钙化、三尖瓣反流严重程度、QRS时限、T波偏移和N末端脑钠肽前体(NT-proBNP)。该整合模型在训练队列(AUC分别为:0.726、0.755、0.809)和验证队列(AUC分别为:0.686、0.678、0.706)中对2年、3年和5年死亡率预测均显示出良好的区分度。校准图和决策曲线分析证实了该模型在不同时间范围内的可靠性和临床实用性。构建了用于个体风险预测的列线图。对各个预测因子的Kaplan-Meier分析显示生存结局有显著分层,而受限立方样条分析表明连续变量与死亡风险之间存在非线性关系。随机生存森林分析确定了前五个预测因子(年龄、NT-proBNP、QRS时限、三尖瓣反流严重程度、NYHA分级),并将其与我们的九变量模型进行比较,证实了整合模型在所有时间点的优越性能。

结论

我们的整合预后模型在预测心力衰竭患者全因死亡率方面表现出强大的性能。该模型通过列线图提供个体风险估计的能力可能有助于临床决策和患者分层。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88ec/11938561/65e71083deda/12872_2025_4642_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验