Consiglio Nazionale delle Ricerche (CNR) - Istituto Officina dei Materiali (IOM), c/o International School for Advanced Studies (SISSA), Trieste, Italy.
Expert Opin Drug Discov. 2024 Oct;19(10):1259-1279. doi: 10.1080/17460441.2024.2387856. Epub 2024 Aug 6.
Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules.
This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors.
The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.
分子动力学(MD)模拟可以支持基于机制的药物设计。事实上,通过在有限温度下捕获生物分子的运动,MD 模拟可以揭示隐藏的结合位点,准确预测药物结合构象,并估计热力学和动力学,这些都是药物发现的关键信息。小 GTP 水解酶(GTPases)调节一连串的信号事件,影响大多数细胞过程。它们的失调与多种疾病有关,使其成为有吸引力的药物靶点。小分子 GTPases 在细胞过程中的广泛作用以及最近批准的共价 KRas 抑制剂作为抗癌药物,重新激发了用小分子靶向小分子 GTPase 的兴趣。
本文强调了 MD 模拟在阐明小 GTPase 机制、评估与癌症相关的变异体的影响以及发现新型抑制剂方面的作用。
将 MD 模拟应用于小 GTPases 示例说明了 MD 模拟在基于结构的药物设计过程中对于具有挑战性的生物分子靶标的作用。此外,人工智能和机器学习增强的 MD 模拟,结合即将到来的量子计算能力,是靶向难以捉摸的小 GTPase 突变和剪接变体的有前途的工具。这种强大的协同作用将有助于开发与小 GTPase 失调相关的创新治疗策略,这些策略可能被用于个性化治疗,并以组织不可知的方式治疗小 GTPase 突变的肿瘤。