Ouassaf Mebarka, Mazri Radhia, Khan Shafi Ullah, Rengasamy Kannan R R, Alhatlani Bader Y
Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra 07000, Algeria.
Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France.
Int J Mol Sci. 2025 Mar 26;26(7):3047. doi: 10.3390/ijms26073047.
In this study, we utilized machine learning techniques to identify potential inhibitors of the MERS-CoV 3CL protease. Among the models evaluated, the Random Forest (RF) algorithm exhibited the highest predictive performance, achieving an accuracy of 0.97, an ROC-AUC score of 0.98, and an F1-score of 0.98. Following model validation, we applied it to a dataset of 14,194 naturally occurring compounds from PubChem. The top-ranked compounds were subsequently subjected to molecular docking, which identified Perenniporide B, Phellifuropyranone A, and Terrestrol G as the most promising candidates, with binding energies of -9.17, -9.08, and -8.71 kcal/mol, respectively. These compounds formed strong interactions with key catalytic residues, suggesting significant inhibitory potential against the viral protease. Furthermore, molecular dynamics simulations confirmed their stability within the active site, reinforcing their viability as antiviral agents. This study demonstrates the effectiveness of integrating machine learning with molecular modeling to accelerate the discovery of therapeutic candidates against emerging viral threats.
在本研究中,我们利用机器学习技术来识别中东呼吸综合征冠状病毒(MERS-CoV)3C样蛋白酶的潜在抑制剂。在评估的模型中,随机森林(RF)算法表现出最高的预测性能,准确率达到0.97,ROC-AUC分数为0.98,F1分数为0.98。模型验证后,我们将其应用于来自PubChem的14194种天然存在化合物的数据集。随后对排名靠前的化合物进行分子对接,确定多年生多孔菌酸B、桑黄呋喃酮A和土栖菌素G为最有前景的候选物,其结合能分别为-9.17、-9.08和-8.71千卡/摩尔。这些化合物与关键催化残基形成了强烈的相互作用,表明对病毒蛋白酶具有显著的抑制潜力。此外,分子动力学模拟证实了它们在活性位点内的稳定性,增强了它们作为抗病毒药物的可行性。这项研究证明了将机器学习与分子建模相结合以加速发现针对新出现病毒威胁的治疗候选物的有效性。