Suppr超能文献

具有抗癌潜力的肉桂酸衍生物的发现方法。

Approaches for the discovery of cinnamic acid derivatives with anticancer potential.

机构信息

Department of Pharmaceutical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.

出版信息

Expert Opin Drug Discov. 2024 Oct;19(10):1281-1291. doi: 10.1080/17460441.2024.2387122. Epub 2024 Aug 6.

Abstract

INTRODUCTION

Cinnamic acid is a privileged scaffold for the design of biologically active compounds with putative anticancer potential, following different synthetic methodologies and procedures. Since there is a need for the production of potent anticancer, cinnamate moiety can significantly contribute in the design of new and more active anticancer agents.

AREAS COVERED

In this review, the authors provide a review on the synthetic approaches for the discovery of cinnamic acid derivatives with anticancer potential. Results from molecular simulations, hybridization, and chemical derivatization along with biological experiments and structural activity relationships are given, described, and discussed by the authors. Information for the mechanism of action is taken from original literature sources.

EXPERT OPINION

The authors suggest that (i) numerous areas of biology-pharmacology need to be considered: selectivity, in vivo studies, toxicity and drug-likeness, the mechanism of action in animals and humans, development of more efficient assays for various cancer types; (ii) hybridization techniques outbalance in the discovery and production of compounds with higher activity and greater selectivity; (iii) repositioning offers new anticancer cinnamic agents.

摘要

简介

肉桂酸是一种具有潜在抗癌活性的生物活性化合物设计的优势骨架,采用不同的合成方法和程序。由于需要生产有效的抗癌药物,肉桂酸部分可以为设计新的、更有效的抗癌药物做出重大贡献。

涵盖领域

在这篇综述中,作者提供了一种关于发现具有抗癌潜力的肉桂酸衍生物的合成方法的综述。作者对分子模拟、杂交和化学衍生的结果,以及生物实验和构效关系进行了描述和讨论。作用机制的信息取自原始文献。

专家意见

作者建议:(i)需要考虑许多生物学-药理学领域:选择性、体内研究、毒性和类药性、在动物和人类中的作用机制、开发针对各种癌症类型的更有效的检测方法;(ii)杂交技术在发现和生产具有更高活性和更大选择性的化合物方面具有优势;(iii)重新定位为具有新的抗癌肉桂酸化合物提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验