Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India.
Phys Chem Chem Phys. 2024 Aug 14;26(32):21888-21904. doi: 10.1039/d4cp01430h.
The sulfation pattern and epimerization of the long-chain sulfated polysaccharide heparan sulfate (HS) cause structural diversity and regulate various physiological and pathological processes when binding with proteins. In this work, we performed a series of molecular dynamics simulations of three variants of the octadecasaccharide HS with varying sulfation positions in aqueous medium in their free forms and in the presence of the chemokine CXCL8 dimer. The free energy of binding depicts the sulfation at the 6-O position of GlcNAc (HS6S), and both 3-O and 6-O positions of GlcNAc (HS3S6S) of HS variants are more likely to bind with the CXCL8 dimer than the triply sulfated HS2S3S6S, which is sulfated at the 2-O position of GlcUA additionally along with 3-O and 6-O positions of GlcNAc. Binding between HS and CXCL8 was driven by electrostatic and van der Waals interactions predominantly regardless of the sulfation pattern; however, unfavorable entropic contribution suppressed the interaction between HS and CXCL8. The contribution of different amino acid residues to the binding energetics suggested that basic amino acids line up the binding site of CXCL8. This study further acknowledges the role of interfacial water that is structured and bound with HS through hydrogen bonds, exhibiting differential hydrogen bond relaxation dynamics compared to when the HS molecules are free. Moreover, this study identifies that with the increase in sulfation, the HS-water hydrogen bond relaxation occurs faster with the complexation, while the reverse trend is followed in their free forms. Significant structural adaptation of the different sulfated HS molecules, as verified from the free energy landscapes generated from various reaction coordinates, root-mean-square-deviations, end-to-end distances, including ring pucker angles, dihedral flexibility, and the high conformational entropy cost arising from the glycosidic bonds, suggests that the different sulfated variants of HS undergo significant structural transformation to bind with CXCL8. The presence of a CXCL8 dimer imposes the bound forms of HS to adopt non-linear structures with skew-boat conformations. The atomistic details of the study would help in understanding the selectivity and conformational diversity, as well as the role of solvents in the recognition of CXCL8 by different sulfated variants of HS molecules.
长链硫酸化多糖肝素硫酸盐 (HS) 的硫酸化模式和差向异构化导致其与蛋白质结合时具有结构多样性,并调节各种生理和病理过程。在这项工作中,我们在水溶液中对具有不同硫酸化位置的十八糖 HS 的三种变体进行了一系列分子动力学模拟,这些变体在自由形式和存在趋化因子 CXCL8 二聚体的情况下。结合自由能描述了 GlcNAc 的 6-O 位置的硫酸化(HS6S),并且 HS 变体的 GlcNAc 的 3-O 和 6-O 位置(HS3S6S)比另外在 GlcUA 的 2-O 位置硫酸化的三重硫酸化 HS2S3S6S 更有可能与 CXCL8 二聚体结合。HS 与 CXCL8 之间的结合主要由静电和范德华相互作用驱动,而不管硫酸化模式如何;然而,不利的熵贡献抑制了 HS 与 CXCL8 的相互作用。不同氨基酸残基对结合能学的贡献表明,碱性氨基酸排列 CXCL8 的结合位点。这项研究进一步承认界面水的作用,即通过氢键与 HS 结构化和结合,与 HS 分子自由时相比,表现出不同的氢键松弛动力学。此外,这项研究表明,随着硫酸化程度的增加,HS-水氢键的松弛在与复合物结合时发生得更快,而在其自由形式中则遵循相反的趋势。不同硫酸化 HS 分子的显著结构适应,正如从各种反应坐标、均方根偏差、末端到末端距离、包括环鼓出角、二面角灵活性以及糖苷键引起的高构象熵成本生成的自由能景观中验证的那样,表明不同硫酸化 HS 变体发生显著结构转化以与 CXCL8 结合。CXCL8 二聚体的存在迫使 HS 的结合形式采用具有偏舟构象的非线性结构。研究的原子细节将有助于理解选择性和构象多样性,以及溶剂在不同硫酸化 HS 分子识别 CXCL8 中的作用。